These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27610921)

  • 1. Mechanically activated artificial cell by using microfluidics.
    Ho KK; Lee LM; Liu AP
    Sci Rep; 2016 Sep; 6():32912. PubMed ID: 27610921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells.
    Ai Y; Xie R; Xiong J; Liang Q
    Small; 2020 Mar; 16(9):e1903940. PubMed ID: 31603270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartments for Synthetic Cells: Osmotically Assisted Separation of Oil from Double Emulsions in a Microfluidic Chip.
    Krafft D; López Castellanos S; Lira RB; Dimova R; Ivanov I; Sundmacher K
    Chembiochem; 2019 Oct; 20(20):2604-2608. PubMed ID: 31090995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances of droplet-based microfluidics for engineering artificial cells.
    Fasciano S; Wang S
    SLAS Technol; 2024 Apr; 29(2):100090. PubMed ID: 37245659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in artificial cells based on microfluidic chips].
    Yang Y; Deng J; Yang J
    Sheng Wu Gong Cheng Xue Bao; 2024 Jul; 40(7):2100-2119. PubMed ID: 39044578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics as a tool to assess and induce emulsion destabilization.
    Porto Santos T; Cejas CM; Cunha RL
    Soft Matter; 2022 Jan; 18(4):698-710. PubMed ID: 35037925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.
    Elani Y
    Biochem Soc Trans; 2016 Jun; 44(3):723-30. PubMed ID: 27284034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures.
    Uhlmann P; Varnik F; Truman P; Zikos G; Moulin JF; Müller-Buschbaum P; Stamm M
    J Phys Condens Matter; 2011 May; 23(18):184123. PubMed ID: 21508469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape and Size Control of Artificial Cells for Bottom-Up Biology.
    Fanalista F; Birnie A; Maan R; Burla F; Charles K; Pawlik G; Deshpande S; Koenderink GH; Dogterom M; Dekker C
    ACS Nano; 2019 May; 13(5):5439-5450. PubMed ID: 31074603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Integration of Synthetic Cells into 3D Microfluidic Devices for Artificial Organ-On-Chip Technologies.
    Hakami N; Burgstaller A; Gao N; Rutz A; Mann S; Staufer O
    Adv Healthc Mater; 2024 Sep; 13(22):e2303334. PubMed ID: 38794823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring Encapsulation Efficiency in Cell-Mimicking Giant Unilamellar Vesicles.
    Supramaniam P; Wang Z; Chatzimichail S; Parperis C; Kumar A; Ho V; Ces O; Salehi-Reyhani A
    ACS Synth Biol; 2023 Apr; 12(4):1227-1238. PubMed ID: 36977193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip microfluidic production of cell-sized liposomes.
    Deshpande S; Dekker C
    Nat Protoc; 2018 May; 13(5):856-874. PubMed ID: 29599442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
    Daradmare S; Lee CS
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.