These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27611034)

  • 81. Numerical simulation of waste tyres gasification.
    Janajreh I; Raza SS
    Waste Manag Res; 2015 May; 33(5):460-8. PubMed ID: 25755167
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry.
    Chen G; Yao J; Liu J; Yan B; Shan R
    Bioresour Technol; 2015 Dec; 198():108-14. PubMed ID: 26378962
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Non isothermal model free kinetics for pyrolysis of rice straw.
    Mishra G; Bhaskar T
    Bioresour Technol; 2014 Oct; 169():614-621. PubMed ID: 25105267
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.
    Zhang L; Duan F; Huang Y
    Bioresour Technol; 2015 Apr; 181():62-71. PubMed ID: 25638405
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Self-heating co-pyrolysis of excessive activated sludge with waste biomass: energy balance and sludge reduction.
    Ding HS; Jiang H
    Bioresour Technol; 2013 Apr; 133():16-22. PubMed ID: 23410532
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.
    Yang X; Yuan C; Xu J; Zhang W
    Bioresour Technol; 2014 Dec; 173():1-5. PubMed ID: 25277348
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel.
    Minaret J; Dutta A
    Bioresour Technol; 2016 Jan; 200():804-11. PubMed ID: 26584229
    [TBL] [Abstract][Full Text] [Related]  

  • 88. HCN and NH3 formation during coal/char gasification in the presence of NO.
    Lin JY; Zhang S; Zhang L; Min Z; Tay H; Li CZ
    Environ Sci Technol; 2010 May; 44(10):3719-23. PubMed ID: 20415414
    [TBL] [Abstract][Full Text] [Related]  

  • 89. [The effect of minerals on transformation of sulfur during pyrolysis and partial gasification].
    Li B; Du XR; Li QF; Zhang JM; Wang Y
    Huan Jing Ke Xue; 2004 Jan; 25(1):149-53. PubMed ID: 15330442
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Digested sewage sludge gasification in supercritical water.
    Zhai Y; Wang C; Chen H; Li C; Zeng G; Pang D; Lu P
    Waste Manag Res; 2013 Apr; 31(4):393-400. PubMed ID: 23315366
    [TBL] [Abstract][Full Text] [Related]  

  • 91. CO2 as a carbon neutral fuel source via enhanced biomass gasification.
    Butterman HC; Castaldi MJ
    Environ Sci Technol; 2009 Dec; 43(23):9030-7. PubMed ID: 19943684
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effect of palygorskite clay on pyrolysis of rape straw: an in situ catalysis study.
    Liu H; Chen T; Chang D; Chen D; Xie J; Frost RL
    J Colloid Interface Sci; 2014 Mar; 417():264-9. PubMed ID: 24407686
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Study of Electrochemical Catalytic Coal Gasification: Gasification Characteristics and Char Structure Evolution.
    Yang F; Yu Q; Duan W; Qi Z; Qin Q
    ACS Omega; 2021 Nov; 6(46):31026-31036. PubMed ID: 34841145
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw.
    Liang J; Lin Y; Wu S; Liu C; Lei M; Zeng C
    Bioresour Technol; 2015 Apr; 181():220-3. PubMed ID: 25647031
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels.
    Yang Y; Brammer JG; Mahmood ASN; Hornung A
    Bioresour Technol; 2014 Oct; 169():794-799. PubMed ID: 25088312
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
    Andrew R; Gokak DT; Sharma P; Gupta S
    Waste Manag Res; 2016 Dec; 34(12):1268-1274. PubMed ID: 27495911
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.
    Narobe M; Golob J; Klinar D; Francetič V; Likozar B
    Bioresour Technol; 2014 Jun; 162():21-9. PubMed ID: 24736208
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Influence of operation conditions and additives on the development of producer gas and tar reduction in air gasification of construction woody wastes using a two-stage gasifier.
    Mun TY; Kim JO; Kim JW; Kim JS
    Bioresour Technol; 2011 Jul; 102(14):7196-203. PubMed ID: 21565495
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.
    Zhou C; Liu G; Wang X; Qi C; Hu Y
    Bioresour Technol; 2016 Aug; 214():218-224. PubMed ID: 27136608
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer.
    Thomsen TP; Hauggaard-Nielsen H; Gøbel B; Stoholm P; Ahrenfeldt J; Henriksen UB; Müller-Stöver DS
    Waste Manag; 2017 Aug; 66():145-154. PubMed ID: 28479087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.