These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27611185)

  • 61. Pulmonary pyruvate metabolism as an index of inflammation and injury in a rat model of acute respiratory distress syndrome.
    Pourfathi M; Xin Y; Rosalino M; Cereda M; Kadlecek S; Duncan I; Profka H; Hamedani H; Siddiqui S; Ruppert K; Chatterjee S; Rizi RR
    NMR Biomed; 2020 Nov; 33(11):e4380. PubMed ID: 32681670
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Vascular endothelial growth factor receptor and coreceptor expression in human acute respiratory distress syndrome.
    Medford AR; Ibrahim NB; Millar AB
    J Crit Care; 2009 Jun; 24(2):236-42. PubMed ID: 19327291
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Alveolar CCN1 is associated with mechanical stretch and acute respiratory distress syndrome severity.
    Morrell ED; Grazioli S; Hung C; Kajikawa O; Kosamo S; Stapleton RD; Gharib SA; Amado-Rodríguez L; Albaiceta G; Wurfel MM; Matute-Bello G
    Am J Physiol Lung Cell Mol Physiol; 2020 Nov; 319(5):L825-L832. PubMed ID: 32936024
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: a novel timing-based ventilatory intervention to avert lung injury.
    Roy S; Sadowitz B; Andrews P; Gatto LA; Marx W; Ge L; Wang G; Lin X; Dean DA; Kuhn M; Ghosh A; Satalin J; Snyder K; Vodovotz Y; Nieman G; Habashi N
    J Trauma Acute Care Surg; 2012 Aug; 73(2):391-400. PubMed ID: 22846945
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pathomechanisms Underlying Hypoxemia in Two COVID-19-Associated Acute Respiratory Distress Syndrome Phenotypes: Insights From Thrombosis and Hemostasis.
    Gando S; Wada T
    Shock; 2022 Jan; 57(1):1-6. PubMed ID: 34172612
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The EIT-based global inhomogeneity index is highly correlated with regional lung opening in patients with acute respiratory distress syndrome.
    Zhao Z; Pulletz S; Frerichs I; Müller-Lisse U; Möller K
    BMC Res Notes; 2014 Feb; 7():82. PubMed ID: 24502320
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pulmonary inflammation decreases with ultra-protective ventilation in experimental ARDS under VV-ECMO: a positron emission tomography study.
    Deniel G; Dhelft F; Lancelot S; Orkisz M; Roux E; Mouton W; Benzerdjeb N; Richard JC; Bitker L
    Front Med (Lausanne); 2024; 11():1338602. PubMed ID: 38444415
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The role of nitric oxide and reactive nitrogen species in experimental ARDS.
    Rehberg S; Maybauer MO; Maybauer DM; Traber LD; Enkhbaatar P; Traber DL
    Front Biosci (Schol Ed); 2010 Jan; 2(1):18-29. PubMed ID: 20036926
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interleukin-33-Dependent Accumulation of Regulatory T Cells Mediates Pulmonary Epithelial Regeneration During Acute Respiratory Distress Syndrome.
    Tan W; Zhang B; Liu X; Zhang C; Liu J; Miao Q
    Front Immunol; 2021; 12():653803. PubMed ID: 33936076
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Intravenous sulforhodamine B reduces alveolar surface tension, improves oxygenation, and reduces ventilation injury in a respiratory distress model.
    Wu Y; Nguyen TL; Perlman CE
    J Appl Physiol (1985); 2021 May; 130(5):1305-1316. PubMed ID: 33211596
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mechanical Power Correlates With Lung Inflammation Assessed by Positron-Emission Tomography in Experimental Acute Lung Injury in Pigs.
    Scharffenberg M; Wittenstein J; Ran X; Zhang Y; Braune A; Theilen R; Maiello L; Benzi G; Bluth T; Kiss T; Pelosi P; Rocco PRM; Schultz MJ; Kotzerke J; Gama de Abreu M; Huhle R
    Front Physiol; 2021; 12():717266. PubMed ID: 34880770
    [No Abstract]   [Full Text] [Related]  

  • 72. [Expression and role of deleted in malignant brain tumor protein 1 in acute respiratory distress syndrome rats induced by sepsis].
    Ge C; Zhang Y; Jia H; Luo Y; Zu Y; Yang Z; Jia L; Wang J; Du Q
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Feb; 35(2):152-157. PubMed ID: 36916375
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS.
    Aschner Y; Zemans RL; Yamashita CM; Downey GP
    Chest; 2014 Oct; 146(4):1081-1091. PubMed ID: 25287998
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Kinetics and Role of Plasma Matrix Metalloproteinase-9 Expression in Acute Lung Injury and the Acute Respiratory Distress Syndrome.
    Hsu AT; Barrett CD; DeBusk GM; Ellson CD; Gautam S; Talmor DS; Gallagher DC; Yaffe MB
    Shock; 2015 Aug; 44(2):128-36. PubMed ID: 26009816
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Lung aeration in experimental malaria-associated acute respiratory distress syndrome by SPECT/CT analysis.
    Quirino TC; Ortolan LDS; Sercundes MK; Marinho CRF; Turato WM; Epiphanio S
    PLoS One; 2020; 15(5):e0233864. PubMed ID: 32470082
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell-free hemoglobin: a novel mediator of acute lung injury.
    Shaver CM; Upchurch CP; Janz DR; Grove BS; Putz ND; Wickersham NE; Dikalov SI; Ware LB; Bastarache JA
    Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(6):L532-41. PubMed ID: 26773065
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation: a lung ultrasound observational study.
    Caltabeloti F; Monsel A; Arbelot C; Brisson H; Lu Q; Gu WJ; Zhou GJ; Auler JO; Rouby JJ
    Crit Care; 2014 May; 18(3):R91. PubMed ID: 24887155
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Resolution of pulmonary edema with variable mechanical ventilation in a porcine model of acute lung injury.
    Graham MR; Gulati H; Kha L; Girling LG; Goertzen A; Mutch WA
    Can J Anaesth; 2011 Aug; 58(8):740-50. PubMed ID: 21643873
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Imaging the Injured Lung: Mechanisms of Action and Clinical Use.
    Cereda M; Xin Y; Goffi A; Herrmann J; Kaczka DW; Kavanagh BP; Perchiazzi G; Yoshida T; Rizi RR
    Anesthesiology; 2019 Sep; 131(3):716-749. PubMed ID: 30664057
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Relation between shunt, aeration, and perfusion in experimental acute lung injury.
    Musch G; Bellani G; Vidal Melo MF; Harris RS; Winkler T; Schroeder T; Venegas JG
    Am J Respir Crit Care Med; 2008 Feb; 177(3):292-300. PubMed ID: 17932380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.