BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27611326)

  • 1. Human Contamination in Public Genome Assemblies.
    Kryukov K; Imanishi T
    PLoS One; 2016; 11(9):e0162424. PubMed ID: 27611326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human contamination in bacterial genomes has created thousands of spurious proteins.
    Breitwieser FP; Pertea M; Zimin AV; Salzberg SL
    Genome Res; 2019 Jun; 29(6):954-960. PubMed ID: 31064768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevalence and Implications of Contamination in Public Genomic Resources: A Case Study of 43 Reference Arthropod Assemblies.
    Francois CM; Durand F; Figuet E; Galtier N
    G3 (Bethesda); 2020 Feb; 10(2):721-730. PubMed ID: 31862787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage.
    Chakraborty M; Baldwin-Brown JG; Long AD; Emerson JJ
    Nucleic Acids Res; 2016 Nov; 44(19):e147. PubMed ID: 27458204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Contiguous Genome Assemblies of 15
    Miller DE; Staber C; Zeitlinger J; Hawley RS
    G3 (Bethesda); 2018 Oct; 8(10):3131-3141. PubMed ID: 30087105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parasite infection of public databases: a data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies.
    Borner J; Burmester T
    BMC Genomics; 2017 Jan; 18(1):100. PubMed ID: 28103801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How complete are "complete" genome assemblies?-An avian perspective.
    Peona V; Weissensteiner MH; Suh A
    Mol Ecol Resour; 2018 Nov; 18(6):1188-1195. PubMed ID: 30035372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GFinisher: a new strategy to refine and finish bacterial genome assemblies.
    Guizelini D; Raittz RT; Cruz LM; Souza EM; Steffens MB; Pedrosa FO
    Sci Rep; 2016 Oct; 6():34963. PubMed ID: 27721396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do it yourself guide to genome assembly.
    Wajid B; Serpedin E
    Brief Funct Genomics; 2016 Jan; 15(1):1-9. PubMed ID: 25392234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of de novo assembly of DNA sequences from double-digest libraries varies substantially among software.
    LaCava MEF; Aikens EO; Megna LC; Randolph G; Hubbard C; Buerkle CA
    Mol Ecol Resour; 2020 Mar; 20(2):360-370. PubMed ID: 31665547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive mapping allows for the identification and exclusion of human DNA contamination in ancient faunal genomic datasets.
    Feuerborn TR; Palkopoulou E; van der Valk T; von Seth J; Munters AR; Pečnerová P; Dehasque M; Ureña I; Ersmark E; Lagerholm VK; Krzewińska M; Rodríguez-Varela R; Götherström A; Dalén L; Díez-Del-Molino D
    BMC Genomics; 2020 Nov; 21(1):844. PubMed ID: 33256612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis.
    Guo Y; Dai Y; Yu H; Zhao S; Samuels DC; Shyr Y
    Genomics; 2017 Mar; 109(2):83-90. PubMed ID: 28131802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the quality and complexity of next-generation sequencing data without a reference genome.
    Anvar SY; Khachatryan L; Vermaat M; van Galen M; Pulyakhina I; Ariyurek Y; Kraaijeveld K; den Dunnen JT; de Knijff P; 't Hoen PA; Laros JF
    Genome Biol; 2014; 15(12):555. PubMed ID: 25514851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundant human DNA contamination identified in non-primate genome databases.
    Longo MS; O'Neill MJ; O'Neill RJ
    PLoS One; 2011 Feb; 6(2):e16410. PubMed ID: 21358816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo genome assemblies of butterflies.
    Ellis EA; Storer CG; Kawahara AY
    Gigascience; 2021 Jun; 10(6):. PubMed ID: 34076242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. acdc - Automated Contamination Detection and Confidence estimation for single-cell genome data.
    Lux M; Krüger J; Rinke C; Maus I; Schlüter A; Woyke T; Sczyrba A; Hammer B
    BMC Bioinformatics; 2016 Dec; 17(1):543. PubMed ID: 27998267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.
    Schneider VA; Graves-Lindsay T; Howe K; Bouk N; Chen HC; Kitts PA; Murphy TD; Pruitt KD; Thibaud-Nissen F; Albracht D; Fulton RS; Kremitzki M; Magrini V; Markovic C; McGrath S; Steinberg KM; Auger K; Chow W; Collins J; Harden G; Hubbard T; Pelan S; Simpson JT; Threadgold G; Torrance J; Wood JM; Clarke L; Koren S; Boitano M; Peluso P; Li H; Chin CS; Phillippy AM; Durbin R; Wilson RK; Flicek P; Eichler EE; Church DM
    Genome Res; 2017 May; 27(5):849-864. PubMed ID: 28396521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus expression detection reveals RNA-sequencing contamination in TCGA.
    Selitsky SR; Marron D; Hollern D; Mose LE; Hoadley KA; Jones C; Parker JS; Dittmer DP; Perou CM
    BMC Genomics; 2020 Jan; 21(1):79. PubMed ID: 31992194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Comparison of Large-Scale DNA Enrichment Sequencing Data.
    Lienhard M; Chavez L
    Methods Mol Biol; 2016; 1418():191-208. PubMed ID: 27008016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical implications of technical accuracy in genome sequencing.
    Goldfeder RL; Priest JR; Zook JM; Grove ME; Waggott D; Wheeler MT; Salit M; Ashley EA
    Genome Med; 2016 Mar; 8(1):24. PubMed ID: 26932475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.