These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27611683)

  • 1. A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys.
    Jousimo J; Ovaskainen O
    PLoS One; 2016; 11(9):e0162447. PubMed ID: 27611683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal density and track counts: understanding the nature of observations based on animal movements.
    Keeping D; Pelletier R
    PLoS One; 2014; 9(5):e96598. PubMed ID: 24871490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of spatio-temporal model to estimate burden of diseases, injuries and risk factors in Iran 1990 - 2013.
    Parsaeian M; Farzadfar F; Zeraati H; Mahmoudi M; Rahimighazikalayeh G; Navidi I; Niakan Kalhori SR; Mohammad K; Jafari Khaledi M
    Arch Iran Med; 2014 Jan; 17(1):28-33. PubMed ID: 24444062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders.
    Dorazio RM; Karanth KU
    PLoS One; 2017; 12(5):e0176966. PubMed ID: 28520796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mark-recapture and mark-resight methods for estimating abundance with remote cameras: a carnivore case study.
    Alonso RS; McClintock BT; Lyren LM; Boydston EE; Crooks KR
    PLoS One; 2015; 10(3):e0123032. PubMed ID: 25822245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of camera trap-based abundance estimators for unmarked populations.
    Amburgey SM; Yackel Adams AA; Gardner B; Hostetter NJ; Siers SR; McClintock BT; Converse SJ
    Ecol Appl; 2021 Oct; 31(7):e02410. PubMed ID: 34255398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding uncertainties in non-linear population trajectories: a Bayesian semi-parametric hierarchical approach to large-scale surveys of coral cover.
    Vercelloni J; Caley MJ; Kayal M; Low-Choy S; Mengersen K
    PLoS One; 2014; 9(11):e110968. PubMed ID: 25364915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying food deserts and swamps based on relative healthy food access: a spatio-temporal Bayesian approach.
    Luan H; Law J; Quick M
    Int J Health Geogr; 2015 Dec; 14():37. PubMed ID: 26714645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal regularization in linear distributed source reconstruction from EEG/MEG: a critical evaluation.
    Dannhauer M; Lämmel E; Wolters CH; Knösche TR
    Brain Topogr; 2013 Apr; 26(2):229-46. PubMed ID: 23112100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating partial regulation in spatiotemporal models of community dynamics.
    Thorson JT; Munch SB; Swain DP
    Ecology; 2017 May; 98(5):1277-1289. PubMed ID: 28144946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Extrapolating Past the Range of Observed Data When Making Statistical Predictions in Ecology.
    Conn PB; Johnson DS; Boveng PL
    PLoS One; 2015; 10(10):e0141416. PubMed ID: 26496358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic demographic analysis of Lake Malawi rock-dwelling cichlids using spatio-temporal sampling.
    Husemann M; Nguyen R; Ding B; Danley PD
    Mol Ecol; 2015 Jun; 24(11):2686-701. PubMed ID: 25891855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges of ecological monitoring: estimating population abundance from sparse trap counts.
    Petrovskaya N; Petrovskii S; Murchie AK
    J R Soc Interface; 2012 Mar; 9(68):420-35. PubMed ID: 21831888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient estimation and prediction for the Bayesian binary spatial model with flexible link functions.
    Roy V; Evangelou E; Zhu Z
    Biometrics; 2016 Mar; 72(1):289-98. PubMed ID: 26331903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical modelling and estimation of abundance and population trends in metapopulation designs.
    Kéry M; Andrew Royle J
    J Anim Ecol; 2010 Mar; 79(2):453-61. PubMed ID: 19886893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for assessing small-scale variation in the abundance of a generalist mesopredator.
    Kämmerle JL; Corlatti L; Harms L; Storch I
    PLoS One; 2018; 13(11):e0207545. PubMed ID: 30462707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian generalized random regression model for estimating heritability using overdispersed count data.
    Mair C; Stear M; Johnson P; Denwood M; Jimenez de Cisneros JP; Stefan T; Matthews L
    Genet Sel Evol; 2015 Jun; 47(1):51. PubMed ID: 26092676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing operational algorithms using linear and non-linear squares estimation in Python for the identification of Culex pipiens and Culex restuans in a mosquito abatement district (Cook County, Illinois, USA).
    Jacob BJ; Gu W; Caamano EX; Novak RJ
    Geospat Health; 2009 May; 3(2):157-76. PubMed ID: 19440960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents.
    Bürger R; Chowell G; Gavilán E; Mulet P; Villada LM
    Math Biosci Eng; 2018 Feb; 15(1):95-123. PubMed ID: 29161828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-dependent population dynamics and dispersal in heterogeneous metapopulations.
    Strevens CM; Bonsall MB
    J Anim Ecol; 2011 Jan; 80(1):282-93. PubMed ID: 20964687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.