These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 27611687)
1. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae). McCann J; Schneeweiss GM; Stuessy TF; Villaseñor JL; Weiss-Schneeweiss H PLoS One; 2016; 11(9):e0162299. PubMed ID: 27611687 [TBL] [Abstract][Full Text] [Related]
2. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Blöch C; Weiss-Schneeweiss H; Schneeweiss GM; Barfuss MH; Rebernig CA; Villaseñor JL; Stuessy TF Mol Phylogenet Evol; 2009 Oct; 53(1):220-33. PubMed ID: 19272456 [TBL] [Abstract][Full Text] [Related]
3. Cladogenetic and Anagenetic Models of Chromosome Number Evolution: A Bayesian Model Averaging Approach. Freyman WA; Höhna S Syst Biol; 2018 Mar; 67(2):195-215. PubMed ID: 28945917 [TBL] [Abstract][Full Text] [Related]
4. Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae). Mccann J; Jang TS; Macas J; Schneeweiss GM; Matzke NJ; Novák P; Stuessy TF; Villaseñor JL; Weiss-Schneeweiss H Syst Biol; 2018 Nov; 67(6):1010-1024. PubMed ID: 29562303 [TBL] [Abstract][Full Text] [Related]
5. Descending Dysploidy and Bidirectional Changes in Genome Size Accompanied Senderowicz M; Nowak T; Rojek-Jelonek M; Bisaga M; Papp L; Weiss-Schneeweiss H; Kolano B Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573417 [TBL] [Abstract][Full Text] [Related]
6. Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by 'x'. Cusimano N; Sousa A; Renner SS Ann Bot; 2012 Mar; 109(4):681-92. PubMed ID: 22210850 [TBL] [Abstract][Full Text] [Related]
7. Phylogeny of Barnadesioideae (Asteraceae) inferred from DNA sequence data and morphology. Gruenstaeudl M; Urtubey E; Jansen RK; Samuel R; Barfuss MH; Stuessy TF Mol Phylogenet Evol; 2009 Jun; 51(3):572-87. PubMed ID: 19264147 [TBL] [Abstract][Full Text] [Related]
8. Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Weiss-Schneeweiss H; Tremetsberger K; Schneeweiss GM; Parker JS; Stuessy TF Ann Bot; 2008 May; 101(7):909-18. PubMed ID: 18285356 [TBL] [Abstract][Full Text] [Related]
9. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation. Mar JC; Harlow TJ; Ragan MA BMC Evol Biol; 2005 Jan; 5():8. PubMed ID: 15676079 [TBL] [Abstract][Full Text] [Related]
10. An Overview to the Index to Chromosome Numbers in Asteraceae Database: Revisiting Base Chromosome Numbers, Polyploidy, Descending Dysploidy, and Hybridization. Semple JC; Watanabe K Methods Mol Biol; 2023; 2703():161-171. PubMed ID: 37646944 [TBL] [Abstract][Full Text] [Related]
11. Molecular phylogeny of the genus Hypochaeris using internal transcribed spacers of nuclear rDNA: inference for chromosomal evolution. Cerbah M; Souza-Chies T; Jubier MF; Lejeune B; Siljak-Yakovlev S Mol Biol Evol; 1998 Mar; 15(3):345-54. PubMed ID: 9501501 [TBL] [Abstract][Full Text] [Related]
12. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Glick L; Mayrose I Mol Biol Evol; 2014 Jul; 31(7):1914-22. PubMed ID: 24710517 [TBL] [Abstract][Full Text] [Related]
13. A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insular lineages. Clark JR; Ree RH; Alfaro ME; King MG; Wagner WL; Roalson EH Syst Biol; 2008 Oct; 57(5):693-707. PubMed ID: 18853357 [TBL] [Abstract][Full Text] [Related]
14. A molecular framework for understanding the phylogeny of Spiranthes (Orchidaceae), a cosmopolitan genus with a North American center of diversity. Dueck LA; Aygoren D; Cameron KM Am J Bot; 2014 Sep; 101(9):1551-71. PubMed ID: 25253714 [TBL] [Abstract][Full Text] [Related]
15. Probabilistic models of chromosome number evolution and the inference of polyploidy. Mayrose I; Barker MS; Otto SP Syst Biol; 2010 Mar; 59(2):132-44. PubMed ID: 20525626 [TBL] [Abstract][Full Text] [Related]
16. The Evolution of Haploid Chromosome Numbers in the Sunflower Family. Mota L; Torices R; Loureiro J Genome Biol Evol; 2016 Dec; 8(11):3516-3528. PubMed ID: 27797951 [TBL] [Abstract][Full Text] [Related]
17. Effects of branch length uncertainty on Bayesian posterior probabilities for phylogenetic hypotheses. Kolaczkowski B; Thornton JW Mol Biol Evol; 2007 Sep; 24(9):2108-18. PubMed ID: 17636043 [TBL] [Abstract][Full Text] [Related]
18. Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae). Sousa A; Cusimano N; Renner SS Ann Bot; 2014 Mar; 113(4):669-80. PubMed ID: 24500949 [TBL] [Abstract][Full Text] [Related]
19. Inferring Chromosome Number Changes Along a Phylogeny Using chromEvol. Rice A; Mayrose I Methods Mol Biol; 2023; 2545():175-187. PubMed ID: 36720813 [TBL] [Abstract][Full Text] [Related]
20. Is the extremely rare Iberian endemic plant species Castrilanthemum debeauxii (Compositae, Anthemideae) a 'living fossil'? Evidence from a multi-locus species tree reconstruction. Tomasello S; Álvarez I; Vargas P; Oberprieler C Mol Phylogenet Evol; 2015 Jan; 82 Pt A():118-30. PubMed ID: 25281923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]