BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27612171)

  • 21. Diffusion-weighted MR imaging in comparison to integrated [¹⁸F]-FDG PET/CT for N-staging in patients with lung cancer.
    Pauls S; Schmidt SA; Juchems MS; Klass O; Luster M; Reske SN; Brambs HJ; Feuerlein S
    Eur J Radiol; 2012 Jan; 81(1):178-82. PubMed ID: 20932700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer.
    Burbach JP; Kleijnen JP; Reerink O; Seravalli E; Philippens ME; Schakel T; van Asselen B; Raaymakers BW; van Vulpen M; Intven M
    Radiother Oncol; 2016 Feb; 118(2):399-407. PubMed ID: 26700601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PET CT thresholds for radiotherapy target definition in non-small-cell lung cancer: how close are we to the pathologic findings?
    Wu K; Ung YC; Hornby J; Freeman M; Hwang D; Tsao MS; Dahele M; Darling G; Maziak DE; Tirona R; Mah K; Wong CS
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(3):699-706. PubMed ID: 19836163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up?
    Chen W; Jian W; Li HT; Li C; Zhang YK; Xie B; Zhou DQ; Dai YM; Lin Y; Lu M; Huang XQ; Xu CX; Chen L
    Magn Reson Imaging; 2010 Jun; 28(5):613-20. PubMed ID: 20418042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffusion-weighted MRI and ADC versus FET-PET and GdT1w-MRI for gross tumor volume (GTV) delineation in re-irradiation of recurrent glioblastoma.
    Popp I; Bott S; Mix M; Oehlke O; Schimek-Jasch T; Nieder C; Nestle U; Bock M; Yuh WTC; Meyer PT; Weber WA; Urbach H; Mader I; Grosu AL
    Radiother Oncol; 2019 Jan; 130():121-131. PubMed ID: 30219612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of clinical outcome after stereotactic body radiotherapy for non-small cell lung cancer using diffusion-weighted MRI and (18)F-FDG PET.
    Iizuka Y; Matsuo Y; Umeoka S; Nakamoto Y; Ueki N; Mizowaki T; Togashi K; Hiraoka M
    Eur J Radiol; 2014 Nov; 83(11):2087-92. PubMed ID: 25174774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer.
    Gondi V; Bradley K; Mehta M; Howard A; Khuntia D; Ritter M; Tomé W
    Int J Radiat Oncol Biol Phys; 2007 Jan; 67(1):187-95. PubMed ID: 17189070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy.
    Takenaka D; Ohno Y; Matsumoto K; Aoyama N; Onishi Y; Koyama H; Nogami M; Yoshikawa T; Matsumoto S; Sugimura K
    J Magn Reson Imaging; 2009 Aug; 30(2):298-308. PubMed ID: 19629984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rectal tumour volume (GTV) delineation using T2-weighted and diffusion-weighted MRI: Implications for radiotherapy planning.
    Regini F; Gourtsoyianni S; Cardoso De Melo R; Charles-Edwards GD; Griffin N; Parikh J; Rottenberg G; Leslie M; Gaya A; Goh V
    Eur J Radiol; 2014 May; 83(5):768-72. PubMed ID: 24646719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of [18F]fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small-cell lung cancer: a prospective study.
    Kolodziejczyk M; Kepka L; Dziuk M; Zawadzka A; Szalus N; Gizewska A; Bujko K
    Int J Radiat Oncol Biol Phys; 2011 Jul; 80(4):1008-14. PubMed ID: 20656419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer.
    Deniaud-Alexandre E; Touboul E; Lerouge D; Grahek D; Foulquier JN; Petegnief Y; Grès B; El Balaa H; Keraudy K; Kerrou K; Montravers F; Milleron B; Lebeau B; Talbot JN
    Int J Radiat Oncol Biol Phys; 2005 Dec; 63(5):1432-41. PubMed ID: 16125870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variability of target and normal structure delineation using multimodality imaging for radiation therapy of pancreatic cancer.
    Dalah E; Moraru I; Paulson E; Erickson B; Li XA
    Int J Radiat Oncol Biol Phys; 2014 Jul; 89(3):633-40. PubMed ID: 24755533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cone-beam computed tomography for lung cancer - validation with CT and monitoring tumour response during chemo-radiation therapy.
    Michienzi A; Kron T; Callahan J; Plumridge N; Ball D; Everitt S
    J Med Imaging Radiat Oncol; 2017 Apr; 61(2):263-270. PubMed ID: 27804280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Change in Apparent Diffusion Coefficient Is Associated With Local Failure After Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer: A Prospective Clinical Trial.
    Sampath S; Rahmanuddin S; Sahoo P; Frankel P; Boswell S; Wong J; Rotter A; Rockne R; Wong J; Park JM
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(3):659-663. PubMed ID: 31271822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DWI-MR and PET-CT Functional Imaging for Boost Tumor Volume Delineation in Neoadjuvant Rectal Cancer Treatment.
    Rosa C; Gasparini L; DI Guglielmo FC; Caravatta L; DI Tommaso M; Pizzi AD; Martino G; Castaldi P; Mazza R; Porreca A; DI Nicola M; Calcagni ML; Genovesi D
    In Vivo; 2023; 37(1):424-432. PubMed ID: 36593016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variabilities of Magnetic Resonance Imaging-, Computed Tomography-, and Positron Emission Tomography-Computed Tomography-Based Tumor and Lymph Node Delineations for Lung Cancer Radiation Therapy Planning.
    Karki K; Saraiya S; Hugo GD; Mukhopadhyay N; Jan N; Schuster J; Schutzer M; Fahrner L; Groves R; Olsen KM; Ford JC; Weiss E
    Int J Radiat Oncol Biol Phys; 2017 Sep; 99(1):80-89. PubMed ID: 28816167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variation in background intensity affects PET-based gross tumor volume delineation in non-small-cell lung cancer: the need for individualized information.
    Chen GH; Yao ZF; Fan XW; Zhang YJ; Gao HQ; Qian W; Wu KL; Jiang GL
    Radiother Oncol; 2013 Oct; 109(1):71-6. PubMed ID: 24060171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microscopic disease extension in three dimensions for non-small-cell lung cancer: development of a prediction model using pathology-validated positron emission tomography and computed tomography features.
    van Loon J; Siedschlag C; Stroom J; Blauwgeers H; van Suylen RJ; Knegjens J; Rossi M; van Baardwijk A; Boersma L; Klomp H; Vogel W; Burgers S; Gilhuijs K
    Int J Radiat Oncol Biol Phys; 2012 Jan; 82(1):448-56. PubMed ID: 20971575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens.
    Wanet M; Lee JA; Weynand B; De Bast M; Poncelet A; Lacroix V; Coche E; Grégoire V; Geets X
    Radiother Oncol; 2011 Jan; 98(1):117-25. PubMed ID: 21074882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of fused PET/CT images for patient selection and radical radiotherapy target volume definition in patients with non-small cell lung cancer: results of a prospective study with mature survival data.
    Mac Manus MP; Everitt S; Bayne M; Ball D; Plumridge N; Binns D; Herschtal A; Cruickshank D; Bressel M; Hicks RJ
    Radiother Oncol; 2013 Mar; 106(3):292-8. PubMed ID: 23541364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.