BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27612585)

  • 1. Nasal conchae function as aerodynamic baffles: Experimental computational fluid dynamic analysis in a turkey nose (Aves: Galliformes).
    Bourke JM; Witmer LM
    Respir Physiol Neurobiol; 2016 Dec; 234():32-46. PubMed ID: 27612585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The way the wind blows: implications of modeling nasal airflow.
    Zhao K; Dalton P
    Curr Allergy Asthma Rep; 2007 May; 7(2):117-25. PubMed ID: 17437682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients.
    Li C; Farag AA; Leach J; Deshpande B; Jacobowitz A; Kim K; Otto BA; Zhao K
    Laryngoscope; 2017 Jun; 127(6):E176-E184. PubMed ID: 28278356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A computational fluid dynamics study of inner flow through nasal cavity with unilateral hypertrophic inferior turbinate].
    Guo Y; Zhang Y; Chen G; Liu S; Lu X; Zhu M; Cai C; Chen X
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Sep; 23(17):773-7. PubMed ID: 20030039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Details of the physiology of the aerodynamic and heat and moisture transfer in the normal nasal cavity.
    Hazeri M; Farshidfar Z; Faramarzi M; Sadrizadeh S; Abouali O
    Respir Physiol Neurobiol; 2020 Sep; 280():103480. PubMed ID: 32553890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voxel-based modeling of airflow in the human nasal cavity.
    Kimura S; Sakamoto T; Sera T; Yokota H; Ono K; Doorly DJ; Schroter RC; Tanaka G
    Comput Methods Biomech Biomed Engin; 2019 Feb; 22(3):331-339. PubMed ID: 30773052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The concept of rhinorespiratory homeostasis--a new approach to nasal breathing.
    Hildebrandt T; Heppt WJ; Kertzscher U; Goubergrits L
    Facial Plast Surg; 2013 Apr; 29(2):85-92. PubMed ID: 23564239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Sneezing as a mechanical defence - a numerical simulation and analysis of the nasal flow].
    Sommer F; Scheithauer M; Kröger R; Rettinger G; Lindemann J
    Laryngorhinootologie; 2014 Nov; 93(11):746-50. PubMed ID: 25369158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological variation and airflow dynamics in the human nose.
    Churchill SE; Shackelford LL; Georgi JN; Black MT
    Am J Hum Biol; 2004; 16(6):625-38. PubMed ID: 15495233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A numerical simulation of the aerodynamics of the nasal cavity].
    Chometon F; Ebbo D; Gillieron P; Koïfman P; Lecomte F; Sorrel-Dejerine N
    Ann Otolaryngol Chir Cervicofac; 2000 Mar; 117(2):98-104. PubMed ID: 10739999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of inferior turbinate hypertrophy on the aerodynamic pattern and physiological functions of the turbulent airflow - a CFD simulation model.
    Chen XB; Lee HP; Chong VF; Wang de Y
    Rhinology; 2010 Jun; 48(2):163-8. PubMed ID: 20502754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Computational fluid dynamics simulations of the airflow in the human nasal cavity].
    Castro Ruiz P; Castro Ruiz F; Costas López A; Cenjor Español C
    Acta Otorrinolaringol Esp; 2005 Nov; 56(9):403-10. PubMed ID: 16353786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breathing life into dinosaurs: tackling challenges of soft-tissue restoration and nasal airflow in extinct species.
    Bourke JM; Porter WM; Ridgely RC; Lyson TR; Schachner ER; Bell PR; Witmer LM
    Anat Rec (Hoboken); 2014 Nov; 297(11):2148-86. PubMed ID: 25312371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Simulation of inferior turbinate reduction using computational fluid dynamics methods].
    Guo YF; Shan YM; Cai HK; Chen XM; Gao XQ
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Feb; 31(4):257-261. PubMed ID: 29871238
    [No Abstract]   [Full Text] [Related]  

  • 15. Assessments of nasal bone fracture effects on nasal airflow: A computational fluid dynamics study.
    Chen XB; Lee HP; Chong VF; Wang de Y
    Am J Rhinol Allergy; 2011; 25(1):e39-43. PubMed ID: 21711975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of air flow patterns in the human nose.
    Elad D; Liebenthal R; Wenig BL; Einav S
    Med Biol Eng Comput; 1993 Nov; 31(6):585-92. PubMed ID: 8145584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of airflow pattern in inferior turbinate hypertrophy: a computational fluid dynamics model.
    Lee HP; Poh HJ; Chong FH; Wang de Y
    Am J Rhinol Allergy; 2009; 23(2):153-8. PubMed ID: 19401040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow.
    Craven BA; Paterson EG; Settles GS; Lawson MJ
    J Biomech Eng; 2009 Sep; 131(9):091002. PubMed ID: 19725691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft tissues influence nasal airflow in diapsids: Implications for dinosaurs.
    Bourke JM; Witmer LM
    J Morphol; 2023 Sep; 284(9):e21619. PubMed ID: 37585224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of nasal airflows and thermal air modification in newborns.
    Moreddu E; Meister L; Dabadie A; Triglia JM; Médale M; Nicollas R
    Med Biol Eng Comput; 2020 Feb; 58(2):307-317. PubMed ID: 31848979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.