These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 27612699)

  • 61. Encapsulation of 10-hydroxy camptothecin in supramolecular hydrogel as an injectable drug delivery system.
    Li R; Shu C; Wang W; Wang X; Li H; Xu D; Zhong W
    J Pharm Sci; 2015 Jul; 104(7):2266-75. PubMed ID: 25980666
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Drug-binding hydrogels of hyaluronic acid functionalized with beta-cyclodextrin.
    Zawko SA; Truong Q; Schmidt CE
    J Biomed Mater Res A; 2008 Dec; 87(4):1044-52. PubMed ID: 18257063
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.
    Chan AW; Neufeld RJ
    Biomaterials; 2009 Oct; 30(30):6119-29. PubMed ID: 19660810
    [TBL] [Abstract][Full Text] [Related]  

  • 64. pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel.
    Zhao L; Zhu L; Liu F; Liu C; Shan-Dan ; Wang Q; Zhang C; Li J; Liu J; Qu X; Yang Z
    Int J Pharm; 2011 May; 410(1-2):83-91. PubMed ID: 21421032
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Soft contact lenses functionalized with pendant cyclodextrins for controlled drug delivery.
    dos Santos JF; Alvarez-Lorenzo C; Silva M; Balsa L; Couceiro J; Torres-Labandeira JJ; Concheiro A
    Biomaterials; 2009 Mar; 30(7):1348-55. PubMed ID: 19064285
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of beta-cyclodextrin addition and temperature on the modulation of hydrophobic interactions in aqueous solutions of an associative alginate.
    Kjøniksen AL; Galant C; Knudsen KD; Nguyen GT; Nyström B
    Biomacromolecules; 2005; 6(6):3129-36. PubMed ID: 16283737
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability.
    Nakata R; Osumi Y; Miyagawa S; Tachibana A; Tanabe T
    J Biosci Bioeng; 2015 Jul; 120(1):111-6. PubMed ID: 25561327
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis, characterization, biodegradability and biocompatibility of a temperature-sensitive PBLA-PEG-PBLA hydrogel as protein delivery system with low critical gelation concentration.
    Xu Y; Shen Y; Xiong Y; Li C; Sun C; Ouahab A; Tu J
    Drug Dev Ind Pharm; 2014 Sep; 40(9):1264-75. PubMed ID: 23855735
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stimulus-responsiveness and methyl violet release behaviors of poly(NIPAAm-co-AA) hydrogels chemically crosslinked with β-cyclodextrin polymer bearing methacrylates.
    Zhao H; Gao J; Liu R; Zhao S
    Carbohydr Res; 2016 Jun; 428():79-86. PubMed ID: 27152631
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation.
    Yang T; Ji R; Deng XX; Du FS; Li ZC
    Soft Matter; 2014 Apr; 10(15):2671-8. PubMed ID: 24647364
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 72. β-Cyclodextrin functionalized agarose-based hydrogels for multiple controlled drug delivery of ibuprofen.
    Pinelli F; Ponti M; Delleani S; Pizzetti F; Vanoli V; Vangosa FB; Castiglione F; Haugen H; Nogueira LP; Rossetti A; Rossi F; Sacchetti A
    Int J Biol Macromol; 2023 Dec; 252():126284. PubMed ID: 37572821
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin.
    Ni X; Cheng A; Li J
    J Biomed Mater Res A; 2009 Mar; 88(4):1031-6. PubMed ID: 18404710
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparing the release of erythromycin and vancomycin from calcium polyphosphate hydrogel using different drug loading methods.
    Chehreghanianzabi Y; Barua R; Shi T; Yurgelevic S; Auner G; Markel DC; Ren W
    J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):475-483. PubMed ID: 31070858
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery.
    Ghorpade VS; Yadav AV; Dias RJ
    Int J Biol Macromol; 2016 Dec; 93(Pt A):75-86. PubMed ID: 27576947
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery.
    Lee F; Chung JE; Kurisawa M
    J Control Release; 2009 Mar; 134(3):186-93. PubMed ID: 19121348
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preparation and properties of cyclodextrin/PNIPAm microgels.
    Liu YY; Yu Y; Tian W; Sun L; Fan XD
    Macromol Biosci; 2009 May; 9(5):525-34. PubMed ID: 19107719
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy.
    Hu X; Tan H; Hao L
    J Mech Behav Biomed Mater; 2016 Dec; 64():43-52. PubMed ID: 27479893
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synthesis and characterization of a novel cationic hydrogel base on salecan-g-PMAPTAC.
    Wei W; Qi X; Li J; Zhong Y; Zuo G; Pan X; Su T; Zhang J; Dong W
    Int J Biol Macromol; 2017 Aug; 101():474-480. PubMed ID: 28344093
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery.
    Chen YY; Wu HC; Sun JS; Dong GC; Wang TW
    Langmuir; 2013 Mar; 29(11):3721-9. PubMed ID: 23441993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.