These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27612711)

  • 21. Bioinspired lightweight cellular materials--understanding effects of natural variation on mechanical properties.
    Cadman J; Chang CC; Chen J; Chen Y; Zhou S; Li W; Li Q
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3146-52. PubMed ID: 23706194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness.
    Yu K; Balasubramanian S; Pahlavani H; Mirzaali MJ; Zadpoor AA; Aubin-Tam ME
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50748-50755. PubMed ID: 33112612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24727574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical Studies on Failure Mechanisms of All-Composite Sandwich Structure with Honeycomb Core under Compression and Impact Loading Conditions.
    Han X; Cai H; Sun J; Wei Z; Huang Y; Wang A
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites.
    Yin S; Wang H; Li J; Ritchie RO; Xu J
    J Mech Behav Biomed Mater; 2019 Jun; 94():10-18. PubMed ID: 30851656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Lateral Compressive Buckling Performance of Aluminum Honeycomb Panels for Long-Span Hollow Core Roofs.
    Zhao C; Zheng W; Ma J; Zhao Y
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The 3D lightweight structural characteristics of the beetle forewing.
    Chen J; Tuo W; Guo Z; Yan L
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1347-1351. PubMed ID: 27987690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance Evaluation of Sandwich Structures Printed by Vat Photopolymerization.
    Nath SD; Nilufar S
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic graphene films and their properties.
    Zhang YL; Chen QD; Jin Z; Kim E; Sun HB
    Nanoscale; 2012 Aug; 4(16):4858-69. PubMed ID: 22767301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From biomimetic apatites to biologically inspired composites.
    Tampieri A; Celotti G; Landi E
    Anal Bioanal Chem; 2005 Feb; 381(3):568-76. PubMed ID: 15696277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties.
    Li L; Guo C; Chen Y; Chen Y
    Bioinspir Biomim; 2020 Mar; 15(3):036006. PubMed ID: 31945752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The beetle elytron plate: a lightweight, high-strength and buffering functional-structural bionic material.
    Zhang X; Xie J; Chen J; Okabe Y; Pan L; Xu M
    Sci Rep; 2017 Jun; 7(1):4440. PubMed ID: 28667299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review of beetle forewing structures and their biomimetic applications in China: (I) On the structural colors and the vertical and horizontal cross-sectional structures.
    Chen J; Xie J; Wu Z; Elbashiry EM; Lu Y
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():605-19. PubMed ID: 26117794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-inspired design of dental multilayers: experiments and model.
    Niu X; Rahbar N; Farias S; Soboyejo W
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):596-602. PubMed ID: 19716103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique.
    Zeinali A; Hashemi B; Akhlaghpoor S
    Phys Med; 2010 Apr; 26(2):88-97. PubMed ID: 19781969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A modified analysis for thermal-mechanical properties of staggered structure in biomimetic materials.
    Jia YF; Xuan FZ; Tu ST
    J Mech Behav Biomed Mater; 2012 Dec; 16():109-20. PubMed ID: 23158216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix.
    Zhu Y; Wu H; Sun S; Zhou T; Wu J; Wan Y
    J Mech Behav Biomed Mater; 2014 Aug; 36():32-46. PubMed ID: 24793172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile synthesis of biomimetic honeycomb material with biological functionality.
    Ma J; Hui YS; Zhang M; Yu Y; Wen W; Qin J
    Small; 2013 Feb; 9(4):497-503. PubMed ID: 23047525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.