These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 27612719)

  • 1. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds.
    Russo V; Tammaro L; Di Marcantonio L; Sorrentino A; Ancora M; Valbonetti L; Turriani M; Martelli A; Cammà C; Barboni B
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():321-9. PubMed ID: 27612719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications.
    Thi Hiep N; Chan Khon H; Dai Hai N; Byong-Taek L; Van Toi V; Thanh Hung L
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):864-878. PubMed ID: 28345449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties evolution of a PLGA-PLCL composite scaffold for ligament tissue engineering under static and cyclic traction-torsion in vitro culture conditions.
    Kahn CJ; Ziani K; Zhang YM; Liu J; Tran N; Babin J; de Isla N; Six JL; Wang X
    J Biomater Sci Polym Ed; 2013; 24(8):899-911. PubMed ID: 23647247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of highly porous electrospun PLGA/PCL/nHA fibrous scaffolds on the differentiation of tooth bud cells in vitro.
    Cai X; Ten Hoopen S; Zhang W; Yi C; Yang W; Yang F; Jansen JA; Walboomers XF; Yelick PC
    J Biomed Mater Res A; 2017 Sep; 105(9):2597-2607. PubMed ID: 28544201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering.
    Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU
    J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction.
    Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation.
    Salerno A; Guarino V; Oliviero O; Ambrosio L; Domingo C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():512-21. PubMed ID: 27040246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering.
    Baker SC; Rohman G; Southgate J; Cameron NR
    Biomaterials; 2009 Mar; 30(7):1321-8. PubMed ID: 19091399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison.
    Yang CH; Huang KS; Grumezescu AM; Wang CY; Tzeng SC; Chen SY; Lin YH; Lin YS
    Electrophoresis; 2014 Feb; 35(2-3):316-22. PubMed ID: 23857679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells.
    Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S
    Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application.
    Rai R; Tallawi M; Frati C; Falco A; Gervasi A; Quaini F; Roether JA; Hochburger T; Schubert DW; Seik L; Barbani N; Lazzeri L; Rosellini E; Boccaccini AR
    Adv Healthc Mater; 2015 Sep; 4(13):2012-25. PubMed ID: 26270628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone.
    Tang ZG; Callaghan JT; Hunt JA
    Biomaterials; 2005 Nov; 26(33):6618-24. PubMed ID: 15935466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering.
    Xie S; Zhu Q; Wang B; Gu H; Liu W; Cui L; Cen L; Cao Y
    Biomaterials; 2010 Jul; 31(19):5100-9. PubMed ID: 20347132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.