BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

876 related articles for article (PubMed ID: 27612741)

  • 21. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells.
    Wang F; Zhang YC; Zhou H; Guo YC; Su XX
    J Biomed Mater Res A; 2014 Mar; 102(3):760-8. PubMed ID: 23564567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering.
    Kumar P; Dehiya BS; Sindhu A
    Iran Biomed J; 2019 May; 23(3):190-9. PubMed ID: 30266067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering.
    Fan T; Chen J; Pan P; Zhang Y; Hu Y; Liu X; Shi X; Zhang Q
    Colloids Surf B Biointerfaces; 2016 Nov; 147():217-223. PubMed ID: 27518453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of nanocomposite scaffolds based on TiO
    Abd-Khorsand S; Saber-Samandari S; Saber-Samandari S
    Int J Biol Macromol; 2017 Aug; 101():51-58. PubMed ID: 28315764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds.
    Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J
    J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of hydroxyapatite in biopolymer-based scaffolds on release of naproxen sodium.
    Asadian-Ardakani V; Saber-Samandari S; Saber-Samandari S
    J Biomed Mater Res A; 2016 Dec; 104(12):2992-3003. PubMed ID: 27449255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration.
    Castilla Bolaños MA; Buttigieg J; Briceño Triana JC
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():519-525. PubMed ID: 28024616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-step strategy for constructing hierarchical pore structured chitosan-hydroxyapatite composite scaffolds for bone tissue engineering.
    Li TT; Zhang Y; Ren HT; Peng HK; Lou CW; Lin JH
    Carbohydr Polym; 2021 May; 260():117765. PubMed ID: 33712123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization.
    Han J; Zhou Z; Yin R; Yang D; Nie J
    Int J Biol Macromol; 2010 Mar; 46(2):199-205. PubMed ID: 19941890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration.
    Yin B; Ma P; Chen J; Wang H; Wu G; Li B; Li Q; Huang Z; Qiu G; Wu Z
    Int J Mol Sci; 2016 Apr; 17(4):575. PubMed ID: 27092492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.
    Przekora A; Palka K; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro mineralization of MC3T3-E1 osteoblast-like cells on collagen/nano-hydroxyapatite scaffolds coated carbon/carbon composites.
    Cao S; Li H; Li K; Lu J; Zhang L
    J Biomed Mater Res A; 2016 Feb; 104(2):533-43. PubMed ID: 26476098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering.
    Shaheen TI; Montaser AS; Li S
    Int J Biol Macromol; 2019 Jan; 121():814-821. PubMed ID: 30342123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.
    Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S
    Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold.
    Koç Demir A; Elçin AE; Elçin YM
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():8-14. PubMed ID: 29752122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.
    Qi XN; Mou ZL; Zhang J; Zhang ZQ
    J Biomed Mater Res A; 2014 Feb; 102(2):366-72. PubMed ID: 23533149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold.
    Wang Y; Yang X; Gu Z; Qin H; Li L; Liu J; Yu X
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():185-192. PubMed ID: 27207053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.
    Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q
    J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair.
    Song J; Zhu G; Wang L; An G; Shi X; Wang Y
    Biofabrication; 2017 Feb; 9(1):015018. PubMed ID: 28140360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.