These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
552 related articles for article (PubMed ID: 27612756)
1. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Čapek J; Machová M; Fousová M; Kubásek J; Vojtěch D; Fojt J; Jablonská E; Lipov J; Ruml T Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():631-9. PubMed ID: 27612756 [TBL] [Abstract][Full Text] [Related]
2. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. Ma S; Tang Q; Feng Q; Song J; Han X; Guo F J Mech Behav Biomed Mater; 2019 May; 93():158-169. PubMed ID: 30798182 [TBL] [Abstract][Full Text] [Related]
3. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting. Zheng Z; Wang L; Jia M; Cheng L; Yan B Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1099-1105. PubMed ID: 27987665 [TBL] [Abstract][Full Text] [Related]
4. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727 [TBL] [Abstract][Full Text] [Related]
5. Effect of High Laser Energy Density on Selective Laser Melted 316L Stainless Steel: Analysis on Metallurgical and Mechanical Properties and Comparison with Wrought 316L Stainless Steel. Shanmuganathan PK; Purushothaman DB; Ponnusamy M 3D Print Addit Manuf; 2023 Jun; 10(3):383-392. PubMed ID: 37346193 [TBL] [Abstract][Full Text] [Related]
6. Antimicrobial Cu-bearing stainless steel scaffolds. Wang Q; Ren L; Li X; Zhang S; Sercombe TB; Yang K Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():519-522. PubMed ID: 27524049 [TBL] [Abstract][Full Text] [Related]
7. Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams. Meenashisundaram GK; Xu Z; Nai MLS; Lu S; Ten JS; Wei J Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32847089 [TBL] [Abstract][Full Text] [Related]
8. Laser surface modification of 316L stainless steel. Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086 [TBL] [Abstract][Full Text] [Related]
9. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Carluccio D; Xu C; Venezuela J; Cao Y; Kent D; Bermingham M; Demir AG; Previtali B; Ye Q; Dargusch M Acta Biomater; 2020 Feb; 103():346-360. PubMed ID: 31862424 [TBL] [Abstract][Full Text] [Related]
10. A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L. Wang N; Meenashisundaram GK; Chang S; Fuh JYH; Dheen ST; Senthil Kumar A J Mech Behav Biomed Mater; 2022 May; 129():105151. PubMed ID: 35276639 [TBL] [Abstract][Full Text] [Related]
11. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210 [TBL] [Abstract][Full Text] [Related]
12. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material. Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928 [TBL] [Abstract][Full Text] [Related]
13. A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays. Ni S; Sun L; Ercan B; Liu L; Ziemer K; Webster TJ J Biomed Mater Res B Appl Biomater; 2014 Aug; 102(6):1297-303. PubMed ID: 24610894 [TBL] [Abstract][Full Text] [Related]
14. Cytocompatibility and Bone-Formation Potential of Se-Coated 316L Stainless Steel with Nano-Pit Arrays. Hu H; Cui R; Mei L; Ni S; Sun H; Zhang C; Ni S J Biomed Nanotechnol; 2018 Apr; 14(4):716-724. PubMed ID: 31352945 [TBL] [Abstract][Full Text] [Related]
15. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity. Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463 [TBL] [Abstract][Full Text] [Related]
16. Biocompatibility of 17-4 PH stainless steel foam for implant applications. Mutlu I; Oktay E Biomed Mater Eng; 2011; 21(4):223-33. PubMed ID: 22182790 [TBL] [Abstract][Full Text] [Related]
18. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility. Peng C; Izawa T; Zhu L; Kuroda K; Okido M ACS Appl Mater Interfaces; 2019 Dec; 11(49):45489-45497. PubMed ID: 31714730 [TBL] [Abstract][Full Text] [Related]
19. Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells. Gopi D; Ramya S; Rajeswari D; Surendiran M; Kavitha L Colloids Surf B Biointerfaces; 2014 Feb; 114():234-40. PubMed ID: 24200951 [TBL] [Abstract][Full Text] [Related]
20. Influences of Horizontal and Vertical Build Orientations and Post-Fabrication Processes on the Fatigue Behavior of Stainless Steel 316L Produced by Selective Laser Melting. Wood P; Libura T; Kowalewski ZL; Williams G; Serjouei A Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]