These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27613019)

  • 1. An evaluation of scanpath-comparison and machine-learning classification algorithms used to study the dynamics of analogy making.
    French RM; Glady Y; Thibaut JP
    Behav Res Methods; 2017 Aug; 49(4):1291-1302. PubMed ID: 27613019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. It depends on how you look at it: scanpath comparison in multiple dimensions with MultiMatch, a vector-based approach.
    Dewhurst R; Nyström M; Jarodzka H; Foulsham T; Johansson R; Holmqvist K
    Behav Res Methods; 2012 Dec; 44(4):1079-100. PubMed ID: 22648695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Eye Movement Data Transformation Technique that Preserves Temporal Information: A Demonstration in a Face Processing Task.
    Król M; Król ME
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31126117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel evaluation of two related and two independent algorithms for eye movement classification during reading.
    Friedman L; Rigas I; Abdulin E; Komogortsev OV
    Behav Res Methods; 2018 Aug; 50(4):1374-1397. PubMed ID: 29766396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanpath comparisons for complex visual search in a naturalistic environment.
    Frame ME; Warren R; Maresca AM
    Behav Res Methods; 2019 Jun; 51(3):1454-1470. PubMed ID: 30511154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the What and When of Analogical Reasoning Across Analogy Formats: An Eye-Tracking and Machine Learning Approach.
    Thibaut JP; Glady Y; French RM
    Cogn Sci; 2022 Nov; 46(11):e13208. PubMed ID: 36399055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humans have idiosyncratic and task-specific scanpaths for judging faces.
    Kanan C; Bseiso DN; Ray NA; Hsiao JH; Cottrell GW
    Vision Res; 2015 Mar; 108():67-76. PubMed ID: 25641371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How task demands influence scanpath similarity in a sequential number-search task.
    Dewhurst R; Foulsham T; Jarodzka H; Johansson R; Holmqvist K; Nyström M
    Vision Res; 2018 Aug; 149():9-23. PubMed ID: 29857021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Saccadic Scanpath Prediction: Subjective Assessment Database and Recurrent Neural Network Based Metric.
    Xia C; Han J; Zhang D
    IEEE Trans Pattern Anal Mach Intell; 2021 Dec; 43(12):4378-4395. PubMed ID: 32750785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of scanpath comparison methods.
    Anderson NC; Anderson F; Kingstone A; Bischof WF
    Behav Res Methods; 2015 Dec; 47(4):1377-1392. PubMed ID: 25540126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined unsupervised-supervised classification of multiparametric PET/MRI data: application to prostate cancer.
    Gatidis S; Scharpf M; Martirosian P; Bezrukov I; Küstner T; Hennenlotter J; Kruck S; Kaufmann S; Schraml C; la Fougère C; Schwenzer NF; Schmidt H
    NMR Biomed; 2015 Jul; 28(7):914-22. PubMed ID: 26014883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of machine learning in scanpath analysis for passive gaze-based interaction.
    Mohamed Selim A; Barz M; Bhatti OS; Alam HMT; Sonntag D
    Front Artif Intell; 2024; 7():1391745. PubMed ID: 38903158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using machine learning to detect events in eye-tracking data.
    Zemblys R; Niehorster DC; Komogortsev O; Holmqvist K
    Behav Res Methods; 2018 Feb; 50(1):160-181. PubMed ID: 28233250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using scanpaths as a learning method for a conflict detection task of multiple target tracking.
    Kang Z; Landry SJ
    Hum Factors; 2014 Sep; 56(6):1150-62. PubMed ID: 25277023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project.
    Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fast Reduced Kernel Extreme Learning Machine.
    Deng WY; Ong YS; Zheng QH
    Neural Netw; 2016 Apr; 76():29-38. PubMed ID: 26829605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data.
    Nyström M; Holmqvist K
    Behav Res Methods; 2010 Feb; 42(1):188-204. PubMed ID: 20160299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of Scanpath Regularity in Reading.
    von der Malsburg T; Kliegl R; Vasishth S
    Cogn Sci; 2015 Sep; 39(7):1675-703. PubMed ID: 25530253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.