These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 27613044)
21. High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification. Nie M; Vashisht AA; Wohlschlegel JA; Boddy MN Sci Rep; 2015 Sep; 5():14389. PubMed ID: 26404184 [TBL] [Abstract][Full Text] [Related]
22. Different proteomic strategies to identify genuine Small Ubiquitin-like MOdifier targets and their modification sites in Trypanosoma brucei procyclic forms. Iribarren PA; Berazategui MA; Bayona JC; Almeida IC; Cazzulo JJ; Alvarez VE Cell Microbiol; 2015 Oct; 17(10):1413-22. PubMed ID: 26096196 [TBL] [Abstract][Full Text] [Related]
23. Mechanisms, regulation and consequences of protein SUMOylation. Wilkinson KA; Henley JM Biochem J; 2010 May; 428(2):133-45. PubMed ID: 20462400 [TBL] [Abstract][Full Text] [Related]
24. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Matic I; Schimmel J; Hendriks IA; van Santen MA; van de Rijke F; van Dam H; Gnad F; Mann M; Vertegaal AC Mol Cell; 2010 Aug; 39(4):641-52. PubMed ID: 20797634 [TBL] [Abstract][Full Text] [Related]
25. System-wide identification of wild-type SUMO-2 conjugation sites. Hendriks IA; D'Souza RC; Chang JG; Mann M; Vertegaal AC Nat Commun; 2015 Jun; 6():7289. PubMed ID: 26073453 [TBL] [Abstract][Full Text] [Related]
26. Detection and Analysis of SUMOylation Substrates In Vitro and In Vivo. Cedeño C; La Monaca E; Esposito M; Gutierrez GJ Methods Mol Biol; 2016; 1449():267-78. PubMed ID: 27613042 [TBL] [Abstract][Full Text] [Related]
27. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry. Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783 [TBL] [Abstract][Full Text] [Related]
28. Role of Ubiquitin and SUMO in Intracellular Trafficking. Sundvall M Curr Issues Mol Biol; 2020; 35():99-108. PubMed ID: 31422935 [TBL] [Abstract][Full Text] [Related]
29. A high-yield double-purification proteomics strategy for the identification of SUMO sites. Hendriks IA; Vertegaal AC Nat Protoc; 2016 Sep; 11(9):1630-49. PubMed ID: 27560170 [TBL] [Abstract][Full Text] [Related]
30. SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer. Lopitz-Otsoa F; Delgado TC; Lachiondo-Ortega S; Azkargorta M; Elortza F; Rodríguez MS; Martínez-Chantar ML J Vis Exp; 2019 Nov; (153):. PubMed ID: 31736480 [TBL] [Abstract][Full Text] [Related]
31. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Miller MJ; Barrett-Wilt GA; Hua Z; Vierstra RD Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16512-7. PubMed ID: 20813957 [TBL] [Abstract][Full Text] [Related]
32. [Advances on SUMO substrates in Arabidopsis]. Guo MX; Fu YF Yi Chuan; 2013 Jun; 35(6):727-34. PubMed ID: 23774017 [TBL] [Abstract][Full Text] [Related]
33. The Regulation of Chromatin by Dynamic SUMO Modifications. Wilson NR; Hochstrasser M Methods Mol Biol; 2016; 1475():23-38. PubMed ID: 27631795 [TBL] [Abstract][Full Text] [Related]
34. Identification of SUMO targets by a novel proteomic approach in plants(F). López-Torrejón G; Guerra D; Catalá R; Salinas J; del Pozo JC J Integr Plant Biol; 2013 Jan; 55(1):96-107. PubMed ID: 23164430 [TBL] [Abstract][Full Text] [Related]
35. The function of SUMOylation and its crucial roles in the development of neurological diseases. Chen X; Zhang Y; Wang Q; Qin Y; Yang X; Xing Z; Shen Y; Wu H; Qi Y FASEB J; 2021 Apr; 35(4):e21510. PubMed ID: 33710677 [TBL] [Abstract][Full Text] [Related]