BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27613044)

  • 21. High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification.
    Nie M; Vashisht AA; Wohlschlegel JA; Boddy MN
    Sci Rep; 2015 Sep; 5():14389. PubMed ID: 26404184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different proteomic strategies to identify genuine Small Ubiquitin-like MOdifier targets and their modification sites in Trypanosoma brucei procyclic forms.
    Iribarren PA; Berazategui MA; Bayona JC; Almeida IC; Cazzulo JJ; Alvarez VE
    Cell Microbiol; 2015 Oct; 17(10):1413-22. PubMed ID: 26096196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms, regulation and consequences of protein SUMOylation.
    Wilkinson KA; Henley JM
    Biochem J; 2010 May; 428(2):133-45. PubMed ID: 20462400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif.
    Matic I; Schimmel J; Hendriks IA; van Santen MA; van de Rijke F; van Dam H; Gnad F; Mann M; Vertegaal AC
    Mol Cell; 2010 Aug; 39(4):641-52. PubMed ID: 20797634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. System-wide identification of wild-type SUMO-2 conjugation sites.
    Hendriks IA; D'Souza RC; Chang JG; Mann M; Vertegaal AC
    Nat Commun; 2015 Jun; 6():7289. PubMed ID: 26073453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection and Analysis of SUMOylation Substrates In Vitro and In Vivo.
    Cedeño C; La Monaca E; Esposito M; Gutierrez GJ
    Methods Mol Biol; 2016; 1449():267-78. PubMed ID: 27613042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry.
    Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K
    Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Ubiquitin and SUMO in Intracellular Trafficking.
    Sundvall M
    Curr Issues Mol Biol; 2020; 35():99-108. PubMed ID: 31422935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A high-yield double-purification proteomics strategy for the identification of SUMO sites.
    Hendriks IA; Vertegaal AC
    Nat Protoc; 2016 Sep; 11(9):1630-49. PubMed ID: 27560170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer.
    Lopitz-Otsoa F; Delgado TC; Lachiondo-Ortega S; Azkargorta M; Elortza F; Rodríguez MS; Martínez-Chantar ML
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31736480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis.
    Miller MJ; Barrett-Wilt GA; Hua Z; Vierstra RD
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16512-7. PubMed ID: 20813957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Advances on SUMO substrates in Arabidopsis].
    Guo MX; Fu YF
    Yi Chuan; 2013 Jun; 35(6):727-34. PubMed ID: 23774017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Regulation of Chromatin by Dynamic SUMO Modifications.
    Wilson NR; Hochstrasser M
    Methods Mol Biol; 2016; 1475():23-38. PubMed ID: 27631795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of SUMO targets by a novel proteomic approach in plants(F).
    López-Torrejón G; Guerra D; Catalá R; Salinas J; del Pozo JC
    J Integr Plant Biol; 2013 Jan; 55(1):96-107. PubMed ID: 23164430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The function of SUMOylation and its crucial roles in the development of neurological diseases.
    Chen X; Zhang Y; Wang Q; Qin Y; Yang X; Xing Z; Shen Y; Wu H; Qi Y
    FASEB J; 2021 Apr; 35(4):e21510. PubMed ID: 33710677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of SUMOylation in Plasmodium falciparum.
    Reiter KH; Matunis MJ
    Methods Mol Biol; 2016; 1475():283-90. PubMed ID: 27631812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection and quantitation of SUMO chains by mass spectrometry.
    Matic I; Hay RT
    Methods Mol Biol; 2012; 832():239-47. PubMed ID: 22350890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SUMOylation by a stress-specific small ubiquitin-like modifier E2 conjugase is essential for survival of Chlamydomonas reinhardtii under stress conditions.
    Knobbe AR; Horken KM; Plucinak TM; Balassa E; Cerutti H; Weeks DP
    Plant Physiol; 2015 Mar; 167(3):753-65. PubMed ID: 25614063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced detection of in vivo SUMO conjugation by Ubc9 fusion-dependent sumoylation (UFDS).
    Niedenthal R
    Methods Mol Biol; 2009; 497():63-79. PubMed ID: 19107411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of post-translational modification in breast cancer treatment.
    Heo KS
    BMB Rep; 2019 Feb; 52(2):113-118. PubMed ID: 30638182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.