These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27613316)

  • 1. Homeostatic regulation of copper in a marine fish simulated by a physiologically based pharmacokinetic model.
    Wang X; Wang WX
    Environ Pollut; 2016 Nov; 218():1245-1254. PubMed ID: 27613316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper bioaccumulation and biokinetic modeling in marine herbivorous fish Siganus oramin.
    Zhou Y; Wei F; Zhang W; Guo Z; Zhang L
    Aquat Toxicol; 2018 Mar; 196():61-69. PubMed ID: 29334673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologically Based Pharmacokinetic Model for Inorganic and Methylmercury in a Marine Fish.
    Wang X; Wang WX
    Environ Sci Technol; 2015 Aug; 49(16):10173-81. PubMed ID: 26214348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feeding reduces waterborne Cu bioaccumulation in a marine rabbitfish Siganus oramin.
    Guo Z; Zhang W; Du S; Zhou Y; Gao N; Zhang L; Green I
    Environ Pollut; 2016 Jan; 208(Pt B):580-9. PubMed ID: 26552536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation.
    Dang F; Zhong H; Wang WX
    Aquat Toxicol; 2009 Sep; 94(3):238-44. PubMed ID: 19683350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unifying prolonged copper exposure, accumulation, and toxicity from food and water in a marine fish.
    Dang F; Wang WX; Rainbow PS
    Environ Sci Technol; 2012 Mar; 46(6):3465-71. PubMed ID: 22372853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of salinity and copper co-exposure on copper bioaccumulation in marine rabbitfish Siganus oramin.
    Zhou Y; Zhang W; Guo Z; Zhang L
    Chemosphere; 2017 Feb; 168():491-500. PubMed ID: 27865883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waterborne vs. dietary copper uptake in rainbow trout and the effects of previous waterborne copper exposure.
    Kamunde C; Clayton C; Wood CM
    Am J Physiol Regul Integr Comp Physiol; 2002 Jul; 283(1):R69-78. PubMed ID: 12069932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of dietary sodium on waterborne copper toxicity in rainbow trout, Oncorhynchus mykiss.
    Kamunde CN; Pyle GG; McDonald DG; Wood CM
    Environ Toxicol Chem; 2003 Feb; 22(2):342-50. PubMed ID: 12558166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of copper regulation in a marine clam Sinonovacula constricta at the organ level: Insight from a physiologically based pharmacokinetic model.
    Ke Y; Wang WX
    Environ Pollut; 2023 Nov; 336():122421. PubMed ID: 37611794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of dietary Na on Cu accumulation in juvenile rainbow trout exposed to combined dietary and waterborne Cu in soft water.
    Kjoss VA; Grosell M; Wood CM
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):520-7. PubMed ID: 16205986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu.
    Eyckmans M; Blust R; De Boeck G
    Aquat Toxicol; 2012 Aug; 118-119():97-107. PubMed ID: 22542735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically Based Pharmacokinetic Model for the Biotransportation of Arsenic in Marine Medaka (
    Zhang W; Song D; Tan QG; Wang WX; Zhang L
    Environ Sci Technol; 2020 Jun; 54(12):7485-7493. PubMed ID: 32401018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicokinetics of tilapia following high exposure to waterborne and dietary copper and implications for coping mechanisms.
    Tsai JW; Ju YR; Huang YH; Deng YS; Chen WY; Wu CC; Liao CM
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3771-80. PubMed ID: 23179213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water.
    Matsuo AY; Wood CM; Val AL
    Aquat Toxicol; 2005 Sep; 74(4):351-64. PubMed ID: 16051381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation and hepatic speciation of copper in rainbow trout (Oncorhynchus mykiss) during chronic waterborne copper exposure.
    Kamunde C; MacPhail R
    Arch Environ Contam Toxicol; 2008 Apr; 54(3):493-503. PubMed ID: 17882469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative tissue distribution and depuration characteristics of copper nanoparticles and soluble copper in rainbow trout (Oncorhynchus mykiss).
    Lindh S; Razmara P; Bogart S; Pyle G
    Environ Toxicol Chem; 2019 Jan; 38(1):80-89. PubMed ID: 30273992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper metabolism in actively growing rainbow trout (Oncorhynchus mykiss): interactions between dietary and waterborne copper uptake.
    Kamunde C; Grosell M; Higgs D; Wood CM
    J Exp Biol; 2002 Jan; 205(Pt 2):279-90. PubMed ID: 11821494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to waterborne Cu inhibits cutaneous Na⁺ uptake in post-hatch larval rainbow trout (Oncorhynchus mykiss).
    Zimmer AM; Brauner CJ; Wood CM
    Aquat Toxicol; 2014 May; 150():151-8. PubMed ID: 24680751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes.
    Klinck JS; Green WW; Mirza RS; Nadella SR; Chowdhury MJ; Wood CM; Pyle GG
    Aquat Toxicol; 2007 Aug; 84(2):198-207. PubMed ID: 17643503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.