These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27613332)

  • 1. Pop-it beads to introduce catalysis of reaction rate and substrate depletion effects.
    Gehret AU
    Biochem Mol Biol Educ; 2017 Mar; 45(2):179-183. PubMed ID: 27613332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of mushroom tyrosinase to introduce michaelis-menten enzyme kinetics to biochemistry students.
    Flurkey WH; Inlow JK
    Biochem Mol Biol Educ; 2017 May; 45(3):270-276. PubMed ID: 28509370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple classroom teaching technique to help students understand Michaelis-Menten kinetics.
    Runge SW; Hill BJ; Moran WM; Turrens JF
    CBE Life Sci Educ; 2006; 5(4):348-52. PubMed ID: 17146042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation.
    Chaudhury S; Cherayil BJ
    J Chem Phys; 2007 Sep; 127(10):105103. PubMed ID: 17867782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A laboratory work to introduce biochemistry undergraduate students to basic enzyme kinetics-alkaline phosphatase as a model.
    Miquet JG; González L; Sotelo AI; González Lebrero RM
    Biochem Mol Biol Educ; 2019 Jan; 47(1):93-99. PubMed ID: 30576049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rethinking enzyme kinetics: Designing and developing a biomolecular interactive tutorial (BIOMINT) learning tool for undergraduate students.
    Gu J; Andreopoulos S; Jenkinson J; Ng DP
    Biochem Mol Biol Educ; 2020 Jan; 48(1):74-79. PubMed ID: 31532881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a three-dimensional animation for deeper molecular understanding of michaelis-menten enzyme kinetics.
    Florjanczyk U; Ng DP; Andreopoulos S; Jenkinson J
    Biochem Mol Biol Educ; 2018 Sep; 46(5):561-565. PubMed ID: 30369036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemistry students' ideas about how an enzyme interacts with a substrate.
    Linenberger KJ; Bretz SL
    Biochem Mol Biol Educ; 2015; 43(4):213-22. PubMed ID: 25850382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical steady-state enzyme kinetics.
    Lorsch JR
    Methods Enzymol; 2014; 536():3-15. PubMed ID: 24423262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.
    Bakalis E; Kosmas M; Papamichael EM
    Bull Math Biol; 2012 Nov; 74(11):2535-46. PubMed ID: 22926529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating concepts in drug design through taste with natural and artificial sweeteners.
    Lipchock JM; Lipchock SV
    Biochem Mol Biol Educ; 2016 Nov; 44(6):550-554. PubMed ID: 27123933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ten-week biochemistry lab project studying wild-type and mutant bacterial alkaline phosphatase.
    Witherow DS
    Biochem Mol Biol Educ; 2016 Nov; 44(6):555-564. PubMed ID: 27229373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-steady state assumptions for non-isolated enzyme-catalysed reactions.
    Stoleriu I; Davidson FA; Liu JL
    J Math Biol; 2004 Jan; 48(1):82-104. PubMed ID: 14685773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized theoretical and practical treatment of the kinetics of an enzyme-catalyzed reaction in the presence of an enzyme equimolar irreversible inhibitor.
    Golicnik M; Stojan J
    J Chem Inf Comput Sci; 2003; 43(5):1486-93. PubMed ID: 14502482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.
    Min W; Xie XS; Bagchi B
    J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single molecule Michaelis-Menten equation beyond quasistatic disorder.
    Xue X; Liu F; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):030902. PubMed ID: 17025584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the PyMOL application to reinforce visual understanding of protein structure.
    Rigsby RE; Parker AB
    Biochem Mol Biol Educ; 2016 Sep; 44(5):433-7. PubMed ID: 27241834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemistry students' ideas about shape and charge in enzyme-substrate interactions.
    Linenberger KJ; Bretz SL
    Biochem Mol Biol Educ; 2014; 42(3):203-12. PubMed ID: 24535990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects.
    Noor E; Flamholz A; Liebermeister W; Bar-Even A; Milo R
    FEBS Lett; 2013 Sep; 587(17):2772-7. PubMed ID: 23892083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.