These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 27613401)
1. Hollow fiber integrated microfluidic platforms for in vitro Co-culture of multiple cell types. Huang JH; Harris JF; Nath P; Iyer R Biomed Microdevices; 2016 Oct; 18(5):88. PubMed ID: 27613401 [TBL] [Abstract][Full Text] [Related]
2. Liver injury-on-a-chip: microfluidic co-cultures with integrated biosensors for monitoring liver cell signaling during injury. Zhou Q; Patel D; Kwa T; Haque A; Matharu Z; Stybayeva G; Gao Y; Diehl AM; Revzin A Lab Chip; 2015 Dec; 15(23):4467-78. PubMed ID: 26480303 [TBL] [Abstract][Full Text] [Related]
3. [Design and fabrication of a microfluidic chip for the co-culture of three cell types]. Wang S; Ge Y; Wu L; Guo H; Yang S; Jin Q Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):294-300. PubMed ID: 28956385 [TBL] [Abstract][Full Text] [Related]
4. Stoichiometric control of live cell mixing to enable fluidically-encoded co-culture models in perfused microbioreactor arrays. Occhetta P; Glass N; Otte E; Rasponi M; Cooper-White JJ Integr Biol (Camb); 2016 Feb; 8(2):194-204. PubMed ID: 26837282 [TBL] [Abstract][Full Text] [Related]
5. Establishing Single-Cell Based Co-Cultures in a Deterministic Manner with a Microfluidic Chip. He CK; Chen YW; Wang SH; Hsu CH J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609349 [TBL] [Abstract][Full Text] [Related]
6. "Open-top" microfluidic device for in vitro three-dimensional capillary beds. Oh S; Ryu H; Tahk D; Ko J; Chung Y; Lee HK; Lee TR; Jeon NL Lab Chip; 2017 Oct; 17(20):3405-3414. PubMed ID: 28944383 [TBL] [Abstract][Full Text] [Related]
7. Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture. Li R; Zhang X; Lv X; Geng L; Li Y; Qin K; Deng Y Anal Biochem; 2017 Dec; 539():48-53. PubMed ID: 29031457 [TBL] [Abstract][Full Text] [Related]
8. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808 [TBL] [Abstract][Full Text] [Related]
9. Construction of stable capillary networks using a microfluidic device. Sudo R Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():350-3. PubMed ID: 26736271 [TBL] [Abstract][Full Text] [Related]
10. Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform. Wu J; Jie M; Dong X; Qi H; Lin JM Rapid Commun Mass Spectrom; 2016 Aug; 30 Suppl 1():80-6. PubMed ID: 27539420 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711 [TBL] [Abstract][Full Text] [Related]
12. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Esch MB; Ueno H; Applegate DR; Shuler ML Lab Chip; 2016 Jul; 16(14):2719-29. PubMed ID: 27332143 [TBL] [Abstract][Full Text] [Related]
13. Human Lung Small Airway-on-a-Chip Protocol. Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955 [TBL] [Abstract][Full Text] [Related]
14. Three dimensional multicellular co-cultures and anti-cancer drug assays in rapid prototyped multilevel microfluidic devices. Hwang H; Park J; Shin C; Do Y; Cho YK Biomed Microdevices; 2013 Aug; 15(4):627-634. PubMed ID: 23232700 [TBL] [Abstract][Full Text] [Related]
15. Patterned Co-culture of Live Cells on a Microchip by Photocrosslinking with Benzophenone. Sato K; Kikuchi S; Yoshida E; Ishii R; Sasaki N; Tsunoda K; Sato K Anal Sci; 2016; 32(1):113-6. PubMed ID: 26753716 [TBL] [Abstract][Full Text] [Related]
16. Maskless fabrication of cell-laden microfluidic chips with localized surface functionalization for the co-culture of cancer cells. Hamid Q; Wang C; Snyder J; Williams S; Liu Y; Sun W Biofabrication; 2015 Mar; 7(1):015012. PubMed ID: 25727298 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274 [TBL] [Abstract][Full Text] [Related]
18. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures. Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370 [TBL] [Abstract][Full Text] [Related]
19. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Jang KJ; Suh KY Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048 [TBL] [Abstract][Full Text] [Related]
20. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration. Lee JM; Seo HI; Bae JH; Chung BG Electrophoresis; 2017 May; 38(9-10):1318-1324. PubMed ID: 28169441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]