BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27613484)

  • 1. Cd
    Jacquart A; Brayner R; El Hage Chahine JM; Ha-Duong NT
    Chem Biol Interact; 2017 Apr; 267():2-10. PubMed ID: 27613484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytochelatins as a Dynamic System for Cd(II) Buffering from the Micro- to Femtomolar Range.
    Wątły J; Łuczkowski M; Padjasek M; Krężel A
    Inorg Chem; 2021 Apr; 60(7):4657-4675. PubMed ID: 33736430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cadmium- and lead-phytochelatin complexes formed in a marine microalga in response to metal exposure.
    Scarano G; Morelli E
    Biometals; 2002 Jun; 15(2):145-51. PubMed ID: 12046922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of Cd2+ and Zn2+ binding by the phytochelatin (gamma-Glu-Cys)4-Gly and its precursor glutathione.
    Chekmeneva E; Prohens R; Díaz-Cruz JM; Ariño C; Esteban M
    Anal Biochem; 2008 Apr; 375(1):82-9. PubMed ID: 18249182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can bismuth film screen printed carbon electrodes be used to study complexation?
    Sosa V; Serrano N; Ariño C; Manuel Díaz-Cruz J; Esteban M
    Talanta; 2013 Mar; 107():356-60. PubMed ID: 23598234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical spectroscopic and reverse-phase HPLC analyses of Hg(II) binding to phytochelatins.
    Mehra RK; Miclat J; Kodati VR; Abdullah R; Hunter TC; Mulchandani P
    Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):73-82. PubMed ID: 8660312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochelatins Bind Zn(II) with Micro- to Picomolar Affinities without the Formation of Binuclear Complexes, Exhibiting Zinc Buffering and Muffling Rather than Storing Functions.
    Łuczkowski M; Leszczyńska W; Wątły J; Clemens S; Krężel A
    Inorg Chem; 2024 Jun; 63(24):10915-10931. PubMed ID: 38845098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From cysteine to longer chain thiols: thermodynamic analysis of cadmium binding by phytochelatins and their fragments.
    Chekmeneva E; Gusmão R; Díaz-Cruz JM; Ariño C; Esteban M
    Metallomics; 2011 Aug; 3(8):838-46. PubMed ID: 21687859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of affinity bead-based in vitro metal-ligand binding assay reveals dominant cadmium affinity of thiol-rich small peptides phytochelatins beyond glutathione.
    Uraguchi S; Nagai K; Naruse F; Otsuka Y; Ohshiro Y; Nakamura R; Takanezawa Y; Kiyono M
    Metallomics; 2021 Dec; 13(12):. PubMed ID: 34850059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the binding modes of phytochelatin to cadmium(II) and zinc(II) ions.
    Kobayashi R; Yoshimura E
    Biol Trace Elem Res; 2006; 114(1-3):313-8. PubMed ID: 17206012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium binding in mixtures of phytochelatins and their fragments: a voltammetric study assisted by multivariate curve resolution and mass spectrometry.
    Gusmão R; Ariño C; Díaz-Cruz JM; Esteban M
    Analyst; 2010 Jan; 135(1):86-95. PubMed ID: 20024186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana.
    Sadi BB; Vonderheide AP; Gong JM; Schroeder JI; Shann JR; Caruso JA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jan; 861(1):123-9. PubMed ID: 18065298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal binding to ligands: cadmium complexes with glutathione revisited.
    Leverrier P; Montigny C; Garrigos M; Champeil P
    Anal Biochem; 2007 Dec; 371(2):215-28. PubMed ID: 17761134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical survey of the chain length influence in phytochelatins competitive binding by cadmium.
    Gusmão R; Ariño C; Díaz-Cruz JM; Esteban M
    Anal Biochem; 2010 Nov; 406(1):61-9. PubMed ID: 20599645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium uptake by Caco-2 cells: effects of Cd complexation by chloride, glutathione, and phytochelatins.
    Jumarie C; Fortin C; Houde M; Campbell PG; Denizeau F
    Toxicol Appl Pharmacol; 2001 Jan; 170(1):29-38. PubMed ID: 11141353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of phytochelatins and other related thiols as complexing biomolecules of As and Cd in wild type and genetically modified Brassica juncea plants.
    Navaza AP; Montes-Bayón M; LeDuc DL; Terry N; Sanz-Medel A
    J Mass Spectrom; 2006 Mar; 41(3):323-31. PubMed ID: 16421878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chain length-dependent Pb(II)-coordination in phytochelatins.
    Mehra RK; Kodati VR; Abdullah R
    Biochem Biophys Res Commun; 1995 Oct; 215(2):730-6. PubMed ID: 7488015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus.
    Le Faucheur S; Behra R; Sigg L
    Environ Toxicol Chem; 2005 Jul; 24(7):1731-7. PubMed ID: 16050590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochelatin systhesis and cadmium uptake of Brassica napus.
    Selvam A; Wong JW
    Environ Technol; 2008 Jul; 29(7):765-73. PubMed ID: 18697518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead(II) complex formation with glutathione.
    Mah V; Jalilehvand F
    Inorg Chem; 2012 Jun; 51(11):6285-98. PubMed ID: 22594853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.