These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27613530)

  • 1. Auditory Magnetoencephalographic Frequency-Tagged Responses Mirror the Ongoing Segmentation Processes Underlying Statistical Learning.
    Farthouat J; Franco A; Mary A; Delpouve J; Wens V; Op de Beeck M; De Tiège X; Peigneux P
    Brain Topogr; 2017 Mar; 30(2):220-232. PubMed ID: 27613530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical learning of multisensory regularities is enhanced in musicians: An MEG study.
    Paraskevopoulos E; Chalas N; Kartsidis P; Wollbrink A; Bamidis P
    Neuroimage; 2018 Jul; 175():150-160. PubMed ID: 29625236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of frequency-tagged magnetic responses suggests statistical regularities remain undetected during NREM sleep.
    Farthouat J; Atas A; Wens V; De Tiege X; Peigneux P
    Sci Rep; 2018 Aug; 8(1):11719. PubMed ID: 30082719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implicit and explicit statistical learning of tone sequences across spectral shifts.
    Daikoku T; Yatomi Y; Yumoto M
    Neuropsychologia; 2014 Oct; 63():194-204. PubMed ID: 25192632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of nonlinguistic statistical learning: From neural entrainment to the emergence of explicit knowledge.
    Moser J; Batterink L; Li Hegner Y; Schleger F; Braun C; Paller KA; Preissl H
    Neuroimage; 2021 Oct; 240():118378. PubMed ID: 34246769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.
    Lappe C; Lappe M; Pantev C
    Neuroimage; 2016 Jan; 124(Pt A):898-905. PubMed ID: 26436712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.
    François C; Schön D
    Hear Res; 2014 Feb; 308():122-8. PubMed ID: 24035820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of missing fundamental phenomenon in the human auditory cortex.
    Matsuwaki Y; Nakajima T; Ookushi T; Iimura J; Kunou K; Nakagawa M; Shintani M; Moriyama H; Ishikawa T
    Auris Nasus Larynx; 2004 Sep; 31(3):208-11. PubMed ID: 15364353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical learning and auditory processing in children with music training: An ERP study.
    Mandikal Vasuki PR; Sharma M; Ibrahim R; Arciuli J
    Clin Neurophysiol; 2017 Jul; 128(7):1270-1281. PubMed ID: 28545016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical Learning Signals in Macaque Inferior Temporal Cortex.
    Kaposvari P; Kumar S; Vogels R
    Cereb Cortex; 2018 Jan; 28(1):250-266. PubMed ID: 27909007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Integration of Stimulus History Underlies Prediction for Naturalistically Evolving Sequences.
    Maniscalco B; Lee JL; Abry P; Lin A; Holroyd T; He BJ
    J Neurosci; 2018 Feb; 38(6):1541-1557. PubMed ID: 29311143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain network dynamics in the human articulatory loop.
    Nishida M; Korzeniewska A; Crone NE; Toyoda G; Nakai Y; Ofen N; Brown EC; Asano E
    Clin Neurophysiol; 2017 Aug; 128(8):1473-1487. PubMed ID: 28622530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical learning of an auditory sequence and reorganization of acquired knowledge: A time course of word segmentation and ordering.
    Daikoku T; Yatomi Y; Yumoto M
    Neuropsychologia; 2017 Jan; 95():1-10. PubMed ID: 27939187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of novel sounds and frequency changes in the human auditory cortex: magnetoencephalographic recordings.
    Alho K; Winkler I; Escera C; Huotilainen M; Virtanen J; Jääskeläinen IP; Pekkonen E; Ilmoniemi RJ
    Psychophysiology; 1998 Mar; 35(2):211-24. PubMed ID: 9529947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of auditory scale illusion.
    Kuriki S; Numao R; Nemoto I
    Hear Res; 2016 Sep; 339():23-31. PubMed ID: 27292114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course of multisensory interactions during audiovisual speech perception in humans: a magnetoencephalographic study.
    Möttönen R; Schürmann M; Sams M
    Neurosci Lett; 2004 Jun; 363(2):112-5. PubMed ID: 15172096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study.
    Popescu M; Otsuka A; Ioannides AA
    Neuroimage; 2004 Apr; 21(4):1622-38. PubMed ID: 15050586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural correlates of perceptual grouping effects in the processing of sound omission by musicians and nonmusicians.
    Ono K; Altmann CF; Matsuhashi M; Mima T; Fukuyama H
    Hear Res; 2015 Jan; 319():25-31. PubMed ID: 25446245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prior experience biases subcortical sensitivity to sound patterns.
    Skoe E; Krizman J; Spitzer E; Kraus N
    J Cogn Neurosci; 2015 Jan; 27(1):124-40. PubMed ID: 25061926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory.
    Kaiser J; Ripper B; Birbaumer N; Lutzenberger W
    Neuroimage; 2003 Oct; 20(2):816-27. PubMed ID: 14568454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.