These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
480 related articles for article (PubMed ID: 27613681)
1. Aerosol and Surface Deposition Characteristics of Two Surrogates for Bacillus anthracis Spores. Bishop AH; Stapleton HL Appl Environ Microbiol; 2016 Nov; 82(22):6682-6690. PubMed ID: 27613681 [TBL] [Abstract][Full Text] [Related]
2. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti. Adhikari A; Yermakov M; Indugula R; Reponen T; Driks A; Grinshpun SA Environ Res; 2016 May; 147():212-7. PubMed ID: 26914458 [TBL] [Abstract][Full Text] [Related]
3. Re-aerosolization of Bacillus thuringiensis spores from concrete and turf. Bishop AH; O'Sullivan CM; Lane A; Butler Ellis MC; Sellors WJ Lett Appl Microbiol; 2017 May; 64(5):364-369. PubMed ID: 28256003 [TBL] [Abstract][Full Text] [Related]
4. Fate and transport of viable Wood JP; Silvestri E; Pirhalla M; Serre SD; Calfee MW; McConkey K; Boe T; Monge M; Aslett D; Abdel-Hady A J Air Waste Manag Assoc; 2024 Jul; 74(7):464-477. PubMed ID: 38775962 [TBL] [Abstract][Full Text] [Related]
5. Wet and dry density of Bacillus anthracis and other Bacillus species. Carrera M; Zandomeni RO; Sagripanti JL J Appl Microbiol; 2008 Jul; 105(1):68-77. PubMed ID: 18298528 [TBL] [Abstract][Full Text] [Related]
6. Virulent spores of Bacillus anthracis and other Bacillus species deposited on solid surfaces have similar sensitivity to chemical decontaminants. Sagripanti JL; Carrera M; Insalaco J; Ziemski M; Rogers J; Zandomeni R J Appl Microbiol; 2007 Jan; 102(1):11-21. PubMed ID: 17184315 [TBL] [Abstract][Full Text] [Related]
7. Differential detection of a surrogate biological threat agent (Bacillus globigii) with a portable surface plasmon resonance biosensor. Adducci BA; Gruszewski HA; Khatibi PA; Schmale DG Biosens Bioelectron; 2016 Apr; 78():160-166. PubMed ID: 26606307 [TBL] [Abstract][Full Text] [Related]
8. Hot, humid air decontamination of a C-130 aircraft contaminated with spores of two acrystalliferous Bacillus thuringiensis strains, surrogates for Bacillus anthracis. Buhr TL; Young AA; Bensman M; Minter ZA; Kennihan NL; Johnson CA; Bohmke MD; Borgers-Klonkowski E; Osborn EB; Avila SD; Theys AM; Jackson PJ J Appl Microbiol; 2016 Apr; 120(4):1074-84. PubMed ID: 26786717 [TBL] [Abstract][Full Text] [Related]
9. Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research. Tufts JA; Calfee MW; Lee SD; Ryan SP World J Microbiol Biotechnol; 2014 May; 30(5):1453-61. PubMed ID: 24338558 [TBL] [Abstract][Full Text] [Related]
10. Difference between the spore sizes of Bacillus anthracis and other Bacillus species. Carrera M; Zandomeni RO; Fitzgibbon J; Sagripanti JL J Appl Microbiol; 2007 Feb; 102(2):303-12. PubMed ID: 17241334 [TBL] [Abstract][Full Text] [Related]
11. Is there an infection risk when playing drums contaminated with Bacillus anthracis? Bennett AM; Pottage T; Parks SR J Appl Microbiol; 2016 Sep; 121(3):840-5. PubMed ID: 27348508 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by chlorination. Rice EW; Adcock NJ; Sivaganesan M; Rose LJ Appl Environ Microbiol; 2005 Sep; 71(9):5587-9. PubMed ID: 16151153 [TBL] [Abstract][Full Text] [Related]
13. Pulmonary deposition of aerosolized Bacillus atrophaeus in a Swine model due to exposure from a simulated anthrax letter incident. Duncan EJ; Kournikakis B; Ho J; Hill I Inhal Toxicol; 2009 Feb; 21(2):141-52. PubMed ID: 18923948 [TBL] [Abstract][Full Text] [Related]
14. Persistence and decontamination of Bacillus atrophaeus subsp. globigii spores on corroded iron in a model drinking water system. Szabo JG; Rice EW; Bishop PL Appl Environ Microbiol; 2007 Apr; 73(8):2451-7. PubMed ID: 17308186 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of personal inhalable aerosol samplers with different filters for use during anthrax responses. Grinshpun SA; Weber AM; Yermakov M; Indugula R; Elmashae Y; Reponen T; Rose L J Occup Environ Hyg; 2017 Aug; 14(8):585-595. PubMed ID: 28506101 [TBL] [Abstract][Full Text] [Related]
16. Reaerosolization of Spores from Flooring Surfaces To Assess the Risk of Dissemination and Transmission of Infections. Paton S; Thompson KA; Parks SR; Bennett AM Appl Environ Microbiol; 2015 Aug; 81(15):4914-9. PubMed ID: 25979883 [TBL] [Abstract][Full Text] [Related]
17. Disinfection methods for spores of Bacillus atrophaeus, B. anthracis, Clostridium tetani, C. botulinum and C. difficile. Oie S; Obayashi A; Yamasaki H; Furukawa H; Kenri T; Takahashi M; Kawamoto K; Makino S Biol Pharm Bull; 2011; 34(8):1325-9. PubMed ID: 21804226 [TBL] [Abstract][Full Text] [Related]
18. Use of a foam spatula for sampling surfaces after bioaerosol deposition. Lewandowski R; Kozlowska K; Szpakowska M; Stepinska M; Trafny EA Appl Environ Microbiol; 2010 Feb; 76(3):688-94. PubMed ID: 20023101 [TBL] [Abstract][Full Text] [Related]
19. Deposition of Bacteria and Bacterial Spores by Bathroom Hot-Air Hand Dryers. Huesca-Espitia LDC; Aslanzadeh J; Feinn R; Joseph G; Murray TS; Setlow P Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439992 [TBL] [Abstract][Full Text] [Related]
20. Development of an aerosol surface inoculation method for bacillus spores. Lee SD; Ryan SP; Snyder EG Appl Environ Microbiol; 2011 Mar; 77(5):1638-45. PubMed ID: 21193670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]