These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27613685)

  • 1. Benefits of a Recombination-Proficient Escherichia coli System for Adaptive Laboratory Evolution.
    Peabody G; Winkler J; Fountain W; Castro DA; Leiva-Aravena E; Kao KC
    Appl Environ Microbiol; 2016 Nov; 82(22):6736-6747. PubMed ID: 27613685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sexual recombination and increased mutation rate expedite evolution of Escherichia coli in varied fitness landscapes.
    Peabody V GL; Li H; Kao KC
    Nat Commun; 2017 Dec; 8(1):2112. PubMed ID: 29235478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing recombination to speed adaptive evolution in Escherichia coli.
    Winkler J; Kao KC
    Metab Eng; 2012 Sep; 14(5):487-95. PubMed ID: 22842472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli.
    Cooper TF
    PLoS Biol; 2007 Sep; 5(9):e225. PubMed ID: 17713986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection.
    Maddamsetti R; Lenski RE
    PLoS Genet; 2018 Jan; 14(1):e1007199. PubMed ID: 29385126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive laboratory evolution for strain engineering.
    Winkler J; Reyes LH; Kao KC
    Methods Mol Biol; 2013; 985():211-22. PubMed ID: 23417806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the benefits of horizontal gene transfer by laboratory evolution and genome sequencing.
    Chu HY; Sprouffske K; Wagner A
    BMC Evol Biol; 2018 Apr; 18(1):54. PubMed ID: 29673327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of directed evolution approaches using the beta-glucuronidase model system.
    Rowe LA; Geddie ML; Alexander OB; Matsumura I
    J Mol Biol; 2003 Sep; 332(4):851-60. PubMed ID: 12972256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evolutionary optimization of a rhodopsin-based phototrophic metabolism in Escherichia coli.
    Kim HA; Kim HJ; Park J; Choi AR; Heo K; Jeong H; Jung KH; Seok YJ; Kim P; Lee SJ
    Microb Cell Fact; 2017 Jun; 16(1):111. PubMed ID: 28619035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitness effects of fixed beneficial mutations in microbial populations.
    Rozen DE; de Visser JA; Gerrish PJ
    Curr Biol; 2002 Jun; 12(12):1040-5. PubMed ID: 12123580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions of multiple exonucleases are essential for cell viability, DNA repair and homologous recombination in recD mutants of Escherichia coli.
    Dermić D
    Genetics; 2006 Apr; 172(4):2057-69. PubMed ID: 16452142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Model for Designing Adaptive Laboratory Evolution Experiments.
    LaCroix RA; Palsson BO; Feist AM
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requisite mutational load, pathway epistasis and deterministic mutation accumulation in sexual versus asexual populations.
    Rice WR
    Genetica; 1998; 102-103(1-6):71-81. PubMed ID: 9766966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation, Clonal Interference, and Frequency-Dependent Interactions in a Long-Term Evolution Experiment with Escherichia coli.
    Maddamsetti R; Lenski RE; Barrick JE
    Genetics; 2015 Jun; 200(2):619-31. PubMed ID: 25911659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of interspecific competition on lineage evolution and a rapid peak shift by interdemic genetic mixing in experimental bacterial populations.
    Nakajima T
    Biosystems; 2012; 108(1-3):34-44. PubMed ID: 22245315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps.
    Barroso-Batista J; Sousa A; Lourenço M; Bergman ML; Sobral D; Demengeot J; Xavier KB; Gordo I
    PLoS Genet; 2014 Mar; 10(3):e1004182. PubMed ID: 24603313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation.
    Torkelson J; Harris RS; Lombardo MJ; Nagendran J; Thulin C; Rosenberg SM
    EMBO J; 1997 Jun; 16(11):3303-11. PubMed ID: 9214645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyper-recombination in dam mutants of Escherichia coli K-12.
    Marinus MG; Konrad EB
    Mol Gen Genet; 1976 Dec; 149(3):273-7. PubMed ID: 799245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evolution of the Escherichia coli chromosome. V. Recombination patterns among strains of diverse origin.
    Milkman R; Raleigh EA; McKane M; Cryderman D; Bilodeau P; McWeeny K
    Genetics; 1999 Oct; 153(2):539-54. PubMed ID: 10511538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Genetic and biochemical aspects of recombination in Escherichia coli K-12: genetic control of recombination].
    Lantsov VA
    Genetika; 1981; 17(7):1172-87. PubMed ID: 7024040
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.