BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2761375)

  • 1. [Efficient parameters of grid diaphragms for the radiation therapy of malignant tumors].
    Klepper LIa
    Med Radiol (Mosk); 1989 Jul; 34(7):63-7. PubMed ID: 2761375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The interactive determination of the mathematical model parameters for the planning of the radiation therapy of malignant tumors. 2. A method of adjusting the mathematical model parameters for calculating the tolerance doses and probabilities of the occurrence of radiation complications in body organs and tissues].
    Klepper LIa
    Med Tekh; 2000; (5):36-40. PubMed ID: 11076364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Interactive determination of the parameters of mathematical models for planning radiotherapy of malignant tumors. I. Mathematical models for calculating dose tolerance, adequate doses and the likelihood of development of radiation complications in normal organs and tissues].
    Klepper LIa
    Med Tekh; 2000; (4):37-41. PubMed ID: 10984881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The determination of the optimal irradiation dose in the tumor tissue-normal body tissues system].
    Klepper LIa
    Med Tekh; 1997; (4):18-21. PubMed ID: 9379858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Interactive determination of the parameters of mathematical models in planning radiotherapy of malignant tumors. 3. Method of local adjustment of the parameters of mathematical models (examples of application)].
    Klepper LIa
    Med Tekh; 2001; (1):27-33. PubMed ID: 11244851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Standard grid diaphragms in the telegammatherapy of malignant tumors].
    Kholin VV; Libson IL
    Med Radiol (Mosk); 1984 Nov; 29(11):86-9. PubMed ID: 6503652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Approximate methods for calculation of the likelihood of radiation complications. The generalized PKLQ method (GPKLQM)].
    Klepper LIa
    Med Tekh; 2002; (5):27-32. PubMed ID: 12512280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors.
    Palm A; Johansson KA
    Acta Oncol; 2007; 46(4):462-73. PubMed ID: 17497313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The mathematical modeling of the optimal dose fields in radiation therapy of malignant tumors. Part 1 (Distance radiotherapy)].
    Klepper LIa
    Med Tekh; 2004; (1):30-7. PubMed ID: 15080005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of protocol target definition on the ability to spare normal tissue: an IMRT and 3D-CRT planning comparison for intraorbital tumors.
    Hein PA; Gladstone DJ; Bellerive MR; Hug EB
    Int J Radiat Oncol Biol Phys; 2005 Aug; 62(5):1540-8. PubMed ID: 16029816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Choice of the geometric parameters in optimizing the irradiation of patients with malignant neoplasms].
    Strakh AG; Tarutin IG
    Med Radiol (Mosk); 1983 Mar; 28(3):59-62. PubMed ID: 6403801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A system of automated radiation treatment of malignant tumors using optimal irradiation programs].
    Pavlov AS; Kostromina KN; Fadeeva MA; Marova IuM; Brikker IN
    Med Radiol (Mosk); 1983 Mar; 28(3):3-10. PubMed ID: 6687622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The normal tissue sparing obtained with simultaneous treatment of pelvic lymph nodes and bladder using intensity-modulated radiotherapy.
    Søndergaard J; Høyer M; Petersen JB; Wright P; Grau C; Muren LP
    Acta Oncol; 2009; 48(2):238-44. PubMed ID: 18759144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Definition of a target function for the goal of determining the optimal physical conditions of irradiation using tolerant dosage values in normal organs and tissues].
    Klepper LIa
    Med Radiol (Mosk); 1981 Jan; 26(1):52-7. PubMed ID: 7464474
    [No Abstract]   [Full Text] [Related]  

  • 16. [Prognostic factors of the probability of the occurrence of complications in the radiation therapy of malignant neoplasms].
    Pavlov AS; Datsenko VS; Fadeeva MA; Zamiatin OA; Kizhaev EV
    Vopr Onkol; 1980; 26(3):3-8. PubMed ID: 7368653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Possibilities of development of complications of radiation therapy in patients with malignant tumors].
    Pavlov AS; Datsenko VS; Fadeeva MA; Zamiatin OA
    Med Radiol (Mosk); 1980 Apr; 25(4):8-13. PubMed ID: 7382766
    [No Abstract]   [Full Text] [Related]  

  • 18. [Volume effect models in radiation therapy].
    Sakata S
    Gan No Rinsho; 1987 Oct; 33(13):1532-41. PubMed ID: 3694792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Uneven irradiation of tumors (the problem of protecting normal tissues)].
    Aliev BM; Gus'kova AK
    Med Radiol (Mosk); 1975 Feb; 20(2):74-87. PubMed ID: 805889
    [No Abstract]   [Full Text] [Related]  

  • 20. [Factors determining the probability of the development of late radiation injuries to adjacent organs in cervical cancer].
    Gabelov AA; Zharinov GM
    Vopr Onkol; 1982; 28(6):72-7. PubMed ID: 7090302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.