BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27613857)

  • 1. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus.
    Cheng J; Hanada Y; Miura A; Tsuda S; Kondo H
    Biochem J; 2016 Nov; 473(21):4011-4026. PubMed ID: 27613857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity.
    Khan NMU; Arai T; Tsuda S; Kondo H
    Sci Rep; 2021 Mar; 11(1):5971. PubMed ID: 33727595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation.
    Kondo H; Hanada Y; Sugimoto H; Hoshino T; Garnham CP; Davies PL; Tsuda S
    Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9360-5. PubMed ID: 22645341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis.
    Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T
    FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for antifreeze activity of ice-binding protein from arctic yeast.
    Lee JH; Park AK; Do H; Park KS; Moh SH; Chi YM; Kim HJ
    J Biol Chem; 2012 Mar; 287(14):11460-8. PubMed ID: 22303017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Annealing condition influences thermal hysteresis of fungal type ice-binding proteins.
    Xiao N; Hanada Y; Seki H; Kondo H; Tsuda S; Hoshino T
    Cryobiology; 2014 Feb; 68(1):159-61. PubMed ID: 24201106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the superior activity of the large isoform of snow flea antifreeze protein.
    Mok YF; Lin FH; Graham LA; Celik Y; Braslavsky I; Davies PL
    Biochemistry; 2010 Mar; 49(11):2593-603. PubMed ID: 20158269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of antifreeze activity of a bacterial multi-domain antifreeze protein.
    Wang C; Pakhomova S; Newcomer ME; Christner BC; Luo BH
    PLoS One; 2017; 12(11):e0187169. PubMed ID: 29108002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium.
    Banerjee R; Chakraborti P; Bhowmick R; Mukhopadhyay S
    J Biomol Struct Dyn; 2015; 33(7):1424-41. PubMed ID: 25190099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.
    Sun T; Gauthier SY; Campbell RL; Davies PL
    J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrot 'antifreeze' protein has an irregular ice-binding site that confers weak freezing point depression but strong inhibition of ice recrystallization.
    Wang Y; Graham LA; Han Z; Eves R; Gruneberg AK; Campbell RL; Zhang H; Davies PL
    Biochem J; 2020 Jun; 477(12):2179-2192. PubMed ID: 32459306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal waters on the nine polyproline type II helical bundle springtail antifreeze protein from Granisotoma rainieri match the ice lattice.
    Scholl CL; Tsuda S; Graham LA; Davies PL
    FEBS J; 2021 Jul; 288(14):4332-4347. PubMed ID: 33460499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1.
    Do H; Kim SJ; Kim HJ; Lee JH
    Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):1061-73. PubMed ID: 24699650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins.
    Biswas AD; Barone V; Daidone I
    J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein.
    Zhang DQ; Liu B; Feng DR; He YM; Wang SQ; Wang HB; Wang JF
    Biochem J; 2004 Feb; 377(Pt 3):589-95. PubMed ID: 14531728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.