These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 27613858)
21. Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: implications for RNA-capping mechanisms in Flavivirus. Bollati M; Milani M; Mastrangelo E; Ricagno S; Tedeschi G; Nonnis S; Decroly E; Selisko B; de Lamballerie X; Coutard B; Canard B; Bolognesi M J Mol Biol; 2009 Jan; 385(1):140-52. PubMed ID: 18976670 [TBL] [Abstract][Full Text] [Related]
22. Structure of geranyl diphosphate C-methyltransferase from Streptomyces coelicolor and implications for the mechanism of isoprenoid modification. Köksal M; Chou WK; Cane DE; Christianson DW Biochemistry; 2012 Apr; 51(14):3003-10. PubMed ID: 22455498 [TBL] [Abstract][Full Text] [Related]
23. Reaction Catalyzed by GenK, a Cobalamin-Dependent Radical S-Adenosyl-l-methionine Methyltransferase in the Biosynthetic Pathway of Gentamicin, Proceeds with Retention of Configuration. Kim HJ; Liu YN; McCarty RM; Liu HW J Am Chem Soc; 2017 Nov; 139(45):16084-16087. PubMed ID: 29091410 [TBL] [Abstract][Full Text] [Related]
24. Structural basis of O-methylation of (2-heptyl-)1-hydroxyquinolin-4(1H)-one and related compounds by the heterocyclic toxin methyltransferase Rv0560c of Mycobacterium tuberculosis. Sartor P; Denkhaus L; Gerhardt S; Einsle O; Fetzner S J Struct Biol; 2021 Dec; 213(4):107794. PubMed ID: 34506908 [TBL] [Abstract][Full Text] [Related]
25. Crystal structures of BchU, a methyltransferase involved in bacteriochlorophyll c biosynthesis, and its complex with S-adenosylhomocysteine: implications for reaction mechanism. Wada K; Yamaguchi H; Harada J; Niimi K; Osumi S; Saga Y; Oh-Oka H; Tamiaki H; Fukuyama K J Mol Biol; 2006 Jul; 360(4):839-49. PubMed ID: 16797589 [TBL] [Abstract][Full Text] [Related]
26. The specificity of interaction between S-adenosyl-L-methionine and a nucleolar 2'-O-methyltransferase. Segal DM; Eichler DC Arch Biochem Biophys; 1989 Dec; 275(2):334-43. PubMed ID: 2596846 [TBL] [Abstract][Full Text] [Related]
27. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes. Huang Y; Komoto J; Konishi K; Takata Y; Ogawa H; Gomi T; Fujioka M; Takusagawa F J Mol Biol; 2000 Apr; 298(1):149-62. PubMed ID: 10756111 [TBL] [Abstract][Full Text] [Related]
28. Functional evaluation of Asp76, 84, 102 and 150 in human arsenic(III) methyltransferase (hAS3MT) interacting with S-adenosylmethionine. Li X; Geng Z; Wang S; Song X; Hu X; Wang Z FEBS Lett; 2013 Jul; 587(14):2232-40. PubMed ID: 23742935 [TBL] [Abstract][Full Text] [Related]
29. Mutational analysis of residues in human arsenic (III) methyltransferase (hAS3MT) belonging to 5 Å around S-adenosylmethionine (SAM). Li X; Geng Z; Chang J; Song X; Wang Z Biochimie; 2014 Dec; 107 Pt B():396-405. PubMed ID: 25447140 [TBL] [Abstract][Full Text] [Related]
30. Sodorifen Biosynthesis in the Rhizobacterium Serratia plymuthica Involves Methylation and Cyclization of MEP-Derived Farnesyl Pyrophosphate by a SAM-Dependent C-Methyltransferase. von Reuss S; Domik D; Lemfack MC; Magnus N; Kai M; Weise T; Piechulla B J Am Chem Soc; 2018 Sep; 140(37):11855-11862. PubMed ID: 30133268 [TBL] [Abstract][Full Text] [Related]
31. A new structural form in the SAM/metal-dependent o‑methyltransferase family: MycE from the mycinamicin biosynthetic pathway. Akey DL; Li S; Konwerski JR; Confer LA; Bernard SM; Anzai Y; Kato F; Sherman DH; Smith JL J Mol Biol; 2011 Oct; 413(2):438-50. PubMed ID: 21884704 [TBL] [Abstract][Full Text] [Related]
32. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Zubieta C; Ross JR; Koscheski P; Yang Y; Pichersky E; Noel JP Plant Cell; 2003 Aug; 15(8):1704-16. PubMed ID: 12897246 [TBL] [Abstract][Full Text] [Related]
33. The Structure of an As(III) S-Adenosylmethionine Methyltransferase with 3-Coordinately Bound As(III) Depicts the First Step in Catalysis. Packianathan C; Kandavelu P; Rosen BP Biochemistry; 2018 Jul; 57(28):4083-4092. PubMed ID: 29894638 [TBL] [Abstract][Full Text] [Related]
34. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase. Brecher MB; Li Z; Zhang J; Chen H; Lin Q; Liu B; Li H Protein Sci; 2015 Jan; 24(1):117-28. PubMed ID: 25352331 [TBL] [Abstract][Full Text] [Related]
35. Catalysis by solvation rather than the desolvation effect: exploring the catalytic efficiency of SAM-dependent chlorinase. Araújo E; Lima AH; Lameira J Phys Chem Chem Phys; 2017 Aug; 19(32):21350-21356. PubMed ID: 28762403 [TBL] [Abstract][Full Text] [Related]
36. Biochemical Characterization and Structural Basis of Reactivity and Regioselectivity Differences between Burkholderia thailandensis and Burkholderia glumae 1,6-Didesmethyltoxoflavin N-Methyltransferase. Fenwick MK; Almabruk KH; Ealick SE; Begley TP; Philmus B Biochemistry; 2017 Aug; 56(30):3934-3944. PubMed ID: 28665591 [TBL] [Abstract][Full Text] [Related]
37. Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 5. Role of the asymmetric sulfonium pole in the enzymatic binding of S-adenosyl-L-methionine. Borchardt RT; Wu YS J Med Chem; 1976 Sep; 19(9):1099-1103. PubMed ID: 978674 [TBL] [Abstract][Full Text] [Related]
38. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Martin JL; McMillan FM Curr Opin Struct Biol; 2002 Dec; 12(6):783-93. PubMed ID: 12504684 [TBL] [Abstract][Full Text] [Related]