BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 27614008)

  • 1. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation.
    Namgaladze D; Brüne B
    Biochim Biophys Acta; 2016 Nov; 1861(11):1796-1807. PubMed ID: 27614008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease.
    Steinberg GR; Schertzer JD
    Immunol Cell Biol; 2014 Apr; 92(4):340-5. PubMed ID: 24638063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation.
    Malandrino MI; Fucho R; Weber M; Calderon-Dominguez M; Mir JF; Valcarcel L; Escoté X; Gómez-Serrano M; Peral B; Salvadó L; Fernández-Veledo S; Casals N; Vázquez-Carrera M; Villarroya F; Vendrell JJ; Serra D; Herrero L
    Am J Physiol Endocrinol Metab; 2015 May; 308(9):E756-69. PubMed ID: 25714670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization.
    Namgaladze D; Brüne B
    Biochim Biophys Acta; 2014 Sep; 1841(9):1329-35. PubMed ID: 24960101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophage fatty acid oxidation in atherosclerosis.
    Xiao S; Qi M; Zhou Q; Gong H; Wei D; Wang G; Feng Q; Wang Z; Liu Z; Zhou Y; Ma X
    Biomed Pharmacother; 2024 Jan; 170():116092. PubMed ID: 38157642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation.
    Liu S; Zhang H; Li Y; Zhang Y; Bian Y; Zeng Y; Yao X; Wan J; Chen X; Li J; Wang Z; Qin Z
    J Immunother Cancer; 2021 Jun; 9(6):. PubMed ID: 34145030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction.
    Gonzalez-Hurtado E; Lee J; Choi J; Selen Alpergin ES; Collins SL; Horton MR; Wolfgang MJ
    Am J Physiol Endocrinol Metab; 2017 May; 312(5):E381-E393. PubMed ID: 28223293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice.
    Malloy VL; Perrone CE; Mattocks DA; Ables GP; Caliendo NS; Orentreich DS; Orentreich N
    Metabolism; 2013 Nov; 62(11):1651-61. PubMed ID: 23928105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation.
    Chen H; Liu Y; Li D; Song J; Xia M
    IUBMB Life; 2016 Feb; 68(2):145-55. PubMed ID: 26748475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of energy metabolism by long-chain fatty acids.
    Nakamura MT; Yudell BE; Loor JJ
    Prog Lipid Res; 2014 Jan; 53():124-44. PubMed ID: 24362249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genistein stimulates fatty acid oxidation in a leptin receptor-independent manner through the JAK2-mediated phosphorylation and activation of AMPK in skeletal muscle.
    Palacios-González B; Zarain-Herzberg A; Flores-Galicia I; Noriega LG; Alemán-Escondrillas G; Zariñan T; Ulloa-Aguirre A; Torres N; Tovar AR
    Biochim Biophys Acta; 2014 Jan; 1841(1):132-40. PubMed ID: 24013029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation.
    Vats D; Mukundan L; Odegaard JI; Zhang L; Smith KL; Morel CR; Wagner RA; Greaves DR; Murray PJ; Chawla A
    Cell Metab; 2006 Jul; 4(1):13-24. PubMed ID: 16814729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage Immunometabolism: Where Are We (Going)?
    Van den Bossche J; O'Neill LA; Menon D
    Trends Immunol; 2017 Jun; 38(6):395-406. PubMed ID: 28396078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggressive Crosstalk Between Fatty Acids and Inflammation in Macrophages and Their Influence on Metabolic Homeostasis.
    Nishiyama K; Fujimoto Y; Takeuchi T; Azuma YT
    Neurochem Res; 2018 Jan; 43(1):19-26. PubMed ID: 28424949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPARγ.
    Pararasa C; Ikwuobe J; Shigdar S; Boukouvalas A; Nabney IT; Brown JE; Devitt A; Bailey CJ; Bennett SJ; Griffiths HR
    Aging Cell; 2016 Feb; 15(1):128-39. PubMed ID: 26522807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation.
    Castrillo A; Tontonoz P
    Annu Rev Cell Dev Biol; 2004; 20():455-80. PubMed ID: 15473848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Fatty Acid Binding Protein 4/aP2 Reduces Macrophage Inflammation Through Activation of SIRT3.
    Xu H; Hertzel AV; Steen KA; Bernlohr DA
    Mol Endocrinol; 2016 Mar; 30(3):325-34. PubMed ID: 26789108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of peroxisome proliferator-activated receptor δ inhibits human macrophage foam cell formation and the inflammatory response induced by very low-density lipoprotein.
    Bojic LA; Sawyez CG; Telford DE; Edwards JY; Hegele RA; Huff MW
    Arterioscler Thromb Vasc Biol; 2012 Dec; 32(12):2919-28. PubMed ID: 23023367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid metabolism in macrophages: a target in cardio-metabolic diseases.
    Ménégaut L; Thomas C; Lagrost L; Masson D
    Curr Opin Lipidol; 2017 Feb; 28(1):19-26. PubMed ID: 27870652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.