These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 27614073)
1. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Zhu K; Lei PJ; Ju LG; Wang X; Huang K; Yang B; Shao C; Zhu Y; Wei G; Fu XD; Li L; Wu M Nucleic Acids Res; 2017 Jan; 45(1):92-105. PubMed ID: 27614073 [TBL] [Abstract][Full Text] [Related]
2. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. Gautam D; Johnson BA; Mac M; Moody CA PLoS Pathog; 2018 Oct; 14(10):e1007367. PubMed ID: 30312361 [TBL] [Abstract][Full Text] [Related]
3. Regulation of SETD2 stability is important for the fidelity of H3K36me3 deposition. Bhattacharya S; Workman JL Epigenetics Chromatin; 2020 Oct; 13(1):40. PubMed ID: 33023640 [TBL] [Abstract][Full Text] [Related]
4. The Benzene Hematotoxic and Reactive Metabolite 1,4-Benzoquinone Impairs the Activity of the Histone Methyltransferase SET Domain Containing 2 (SETD2) and Causes Aberrant Histone H3 Lysine 36 Trimethylation (H3K36me3). Berthelet J; Michail C; Bui LC; Le Coadou L; Sirri V; Wang L; Dulphy N; Dupret JM; Chomienne C; Guidez F; Rodrigues-Lima F Mol Pharmacol; 2021 Sep; 100(3):283-294. PubMed ID: 34266924 [TBL] [Abstract][Full Text] [Related]
5. H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells. Wang L; Niu N; Li L; Shao R; Ouyang H; Zou W PLoS Biol; 2018 Nov; 16(11):e2006522. PubMed ID: 30422989 [TBL] [Abstract][Full Text] [Related]
7. The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain. Bhattacharya S; Levy MJ; Zhang N; Li H; Florens L; Washburn MP; Workman JL Nat Commun; 2021 Mar; 12(1):1443. PubMed ID: 33664260 [TBL] [Abstract][Full Text] [Related]
8. Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation. Hacker KE; Fahey CC; Shinsky SA; Chiang YJ; DiFiore JV; Jha DK; Vo AH; Shavit JA; Davis IJ; Strahl BD; Rathmell WK J Biol Chem; 2016 Sep; 291(40):21283-21295. PubMed ID: 27528607 [TBL] [Abstract][Full Text] [Related]
9. Cullin 3SPOP ubiquitin E3 ligase promotes the poly-ubiquitination and degradation of HDAC6. Tan Y; Ci Y; Dai X; Wu F; Guo J; Liu D; North BJ; Huo J; Zhang J Oncotarget; 2017 Jul; 8(29):47890-47901. PubMed ID: 28599312 [TBL] [Abstract][Full Text] [Related]
10. Cancer-driving H3G34V/R/D mutations block H3K36 methylation and H3K36me3-MutSα interaction. Fang J; Huang Y; Mao G; Yang S; Rennert G; Gu L; Li H; Li GM Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9598-9603. PubMed ID: 30181289 [TBL] [Abstract][Full Text] [Related]
11. Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Li C; Ao J; Fu J; Lee DF; Xu J; Lonard D; O'Malley BW Oncogene; 2011 Oct; 30(42):4350-64. PubMed ID: 21577200 [TBL] [Abstract][Full Text] [Related]
13. The SETD2 Methyltransferase Supports Productive HPV31 Replication through the LEDGF/CtIP/Rad51 Pathway. Mac M; DeVico BM; Raspanti SM; Moody CA J Virol; 2023 May; 97(5):e0020123. PubMed ID: 37154769 [TBL] [Abstract][Full Text] [Related]
14. SPOP mutation induces DNA methylation via stabilizing GLP/G9a. Zhang J; Gao K; Xie H; Wang D; Zhang P; Wei T; Yan Y; Pan Y; Ye W; Chen H; Shi Q; Li Y; Zhao SM; Hou X; Weroha SJ; Wang Y; Zhang J; Karnes RJ; He HH; Wang L; Wang C; Huang H Nat Commun; 2021 Sep; 12(1):5716. PubMed ID: 34588438 [TBL] [Abstract][Full Text] [Related]
15. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. de Almeida SF; Grosso AR; Koch F; Fenouil R; Carvalho S; Andrade J; Levezinho H; Gut M; Eick D; Gut I; Andrau JC; Ferrier P; Carmo-Fonseca M Nat Struct Mol Biol; 2011 Jul; 18(9):977-83. PubMed ID: 21792193 [TBL] [Abstract][Full Text] [Related]
16. SETD2 alterations and histone H3K36 trimethylation in phyllodes tumor of breast. Tsang JY; Lai ST; Ni YB; Shao Y; Poon IK; Kwan JS; Chow C; Shea KH; Tse GM Breast Cancer Res Treat; 2021 Jun; 187(2):339-347. PubMed ID: 33844099 [TBL] [Abstract][Full Text] [Related]
17. High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell carcinoma. Ho TH; Park IY; Zhao H; Tong P; Champion MD; Yan H; Monzon FA; Hoang A; Tamboli P; Parker AS; Joseph RW; Qiao W; Dykema K; Tannir NM; Castle EP; Nunez-Nateras R; Teh BT; Wang J; Walker CL; Hung MC; Jonasch E Oncogene; 2016 Mar; 35(12):1565-74. PubMed ID: 26073078 [TBL] [Abstract][Full Text] [Related]
18. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Yoh SM; Lucas JS; Jones KA Genes Dev; 2008 Dec; 22(24):3422-34. PubMed ID: 19141475 [TBL] [Abstract][Full Text] [Related]
19. Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Errington WJ; Khan MQ; Bueler SA; Rubinstein JL; Chakrabartty A; Privé GG Structure; 2012 Jul; 20(7):1141-53. PubMed ID: 22632832 [TBL] [Abstract][Full Text] [Related]
20. SETD2 and histone H3 lysine 36 methylation deficiency in advanced systemic mastocytosis. Martinelli G; Mancini M; De Benedittis C; Rondoni M; Papayannidis C; Manfrini M; Meggendorfer M; Calogero R; Guadagnuolo V; Fontana MC; Bavaro L; Padella A; Zago E; Pagano L; Zanotti R; Scaffidi L; Specchia G; Albano F; Merante S; Elena C; Savini P; Gangemi D; Tosi P; Ciceri F; Poletti G; Riccioni L; Morigi F; Delledonne M; Haferlach T; Cavo M; Valent P; Soverini S Leukemia; 2018 Jan; 32(1):139-148. PubMed ID: 28663576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]