These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 27614073)
21. SETD2, an epigenetic tumor suppressor: a focused review on GI tumor. Hu M; Hu M; Zhang Q; Lai J; Liu X Front Biosci (Landmark Ed); 2020 Jan; 25(4):781-797. PubMed ID: 31585917 [TBL] [Abstract][Full Text] [Related]
22. Interplay between H3K36me3, methyltransferase SETD2, and mismatch recognition protein MutSα facilitates processing of oxidative DNA damage in human cells. Guo S; Fang J; Xu W; Ortega J; Liu CY; Gu L; Chang Z; Li GM J Biol Chem; 2022 Jul; 298(7):102102. PubMed ID: 35667440 [TBL] [Abstract][Full Text] [Related]
23. BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. Kwon JE; La M; Oh KH; Oh YM; Kim GR; Seol JH; Baek SH; Chiba T; Tanaka K; Bang OS; Joe CO; Chung CH J Biol Chem; 2006 May; 281(18):12664-72. PubMed ID: 16524876 [TBL] [Abstract][Full Text] [Related]
24. Systematic perturbations of SETD2, NSD1, NSD2, NSD3, and ASH1L reveal their distinct contributions to H3K36 methylation. Shipman GA; Padilla R; Horth C; Hu B; Bareke E; Vitorino FN; Gongora JM; Garcia BA; Lu C; Majewski J Genome Biol; 2024 Oct; 25(1):263. PubMed ID: 39390582 [TBL] [Abstract][Full Text] [Related]
25. Breast cancer metastasis suppressor 1 (BRMS1) is destabilized by the Cul3-SPOP E3 ubiquitin ligase complex. Kim B; Nam HJ; Pyo KE; Jang MJ; Kim IS; Kim D; Boo K; Lee SH; Yoon JB; Baek SH; Kim JH Biochem Biophys Res Commun; 2011 Dec; 415(4):720-6. PubMed ID: 22085717 [TBL] [Abstract][Full Text] [Related]
26. Endometrial cancer-associated mutants of SPOP are defective in regulating estrogen receptor-α protein turnover. Zhang P; Gao K; Jin X; Ma J; Peng J; Wumaier R; Tang Y; Zhang Y; An J; Yan Q; Dong Y; Huang H; Yu L; Wang C Cell Death Dis; 2015 Mar; 6(3):e1687. PubMed ID: 25766326 [TBL] [Abstract][Full Text] [Related]
27. Integrated Genomic and Proteomic Analyses Reveal Novel Mechanisms of the Methyltransferase SETD2 in Renal Cell Carcinoma Development. Li L; Miao W; Huang M; Williams P; Wang Y Mol Cell Proteomics; 2019 Mar; 18(3):437-447. PubMed ID: 30487242 [TBL] [Abstract][Full Text] [Related]
28. Dual Chromatin and Cytoskeletal Remodeling by SETD2. Park IY; Powell RT; Tripathi DN; Dere R; Ho TH; Blasius TL; Chiang YC; Davis IJ; Fahey CC; Hacker KE; Verhey KJ; Bedford MT; Jonasch E; Rathmell WK; Walker CL Cell; 2016 Aug; 166(4):950-962. PubMed ID: 27518565 [TBL] [Abstract][Full Text] [Related]
29. SETD2 reduction adversely affects the development of mouse early embryos. Li C; Huang Z; Gu L J Cell Biochem; 2020 Jan; 121(1):797-803. PubMed ID: 31407364 [TBL] [Abstract][Full Text] [Related]
30. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Fontebasso AM; Schwartzentruber J; Khuong-Quang DA; Liu XY; Sturm D; Korshunov A; Jones DT; Witt H; Kool M; Albrecht S; Fleming A; Hadjadj D; Busche S; Lepage P; Montpetit A; Staffa A; Gerges N; Zakrzewska M; Zakrzewski K; Liberski PP; Hauser P; Garami M; Klekner A; Bognar L; Zadeh G; Faury D; Pfister SM; Jabado N; Majewski J Acta Neuropathol; 2013 May; 125(5):659-69. PubMed ID: 23417712 [TBL] [Abstract][Full Text] [Related]
31. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Yang S; Zheng X; Lu C; Li GM; Allis CD; Li H Genes Dev; 2016 Jul; 30(14):1611-6. PubMed ID: 27474439 [TBL] [Abstract][Full Text] [Related]
32. A New Chromatin-Cytoskeleton Link in Cancer. Giaccia AJ Mol Cancer Res; 2016 Dec; 14(12):1173-1175. PubMed ID: 27528705 [TBL] [Abstract][Full Text] [Related]
33. SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes. Xie Y; Sahin M; Sinha S; Wang Y; Nargund AM; Lyu Y; Han S; Dong Y; Hsieh JJ; Leslie CS; Cheng EH Nat Cancer; 2022 Feb; 3(2):188-202. PubMed ID: 35115713 [TBL] [Abstract][Full Text] [Related]
34. SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation. Fahey CC; Davis IJ Cold Spring Harb Perspect Med; 2017 May; 7(5):. PubMed ID: 28159833 [TBL] [Abstract][Full Text] [Related]
35. SETD2: an epigenetic modifier with tumor suppressor functionality. Li J; Duns G; Westers H; Sijmons R; van den Berg A; Kok K Oncotarget; 2016 Aug; 7(31):50719-50734. PubMed ID: 27191891 [TBL] [Abstract][Full Text] [Related]
36. Structural and enzymatic evidence for the methylation of the ACK1 tyrosine kinase by the histone lysine methyltransferase SETD2. Le Coadou L; Berthelet J; Mechaly AE; Michail C; Bui LC; Dairou J; Haouz A; Dupret JM; Rodrigues Lima F Biochem Biophys Res Commun; 2024 Feb; 695():149400. PubMed ID: 38160530 [TBL] [Abstract][Full Text] [Related]
37. Depletion of H3K36me2 recapitulates epigenomic and phenotypic changes induced by the H3.3K36M oncohistone mutation. Rajagopalan KN; Chen X; Weinberg DN; Chen H; Majewski J; Allis CD; Lu C Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619101 [TBL] [Abstract][Full Text] [Related]
38. Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond. Skucha A; Ebner J; Grebien F Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30818762 [TBL] [Abstract][Full Text] [Related]
39. Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. Bunce MW; Boronenkov IV; Anderson RA J Biol Chem; 2008 Mar; 283(13):8678-86. PubMed ID: 18218622 [TBL] [Abstract][Full Text] [Related]
40. SETD2 as a regulator of N6-methyladenosine RNA methylation and modifiers in cancer. Kumari S; Muthusamy S Eur J Cancer Prev; 2020 Nov; 29(6):556-564. PubMed ID: 33021769 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]