These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 27614073)

  • 61. H3K36 histone methyltransferase Setd2 is required for murine embryonic stem cell differentiation toward endoderm.
    Zhang Y; Xie S; Zhou Y; Xie Y; Liu P; Sun M; Xiao H; Jin Y; Sun X; Chen Z; Huang Q; Chen S
    Cell Rep; 2014 Sep; 8(6):1989-2002. PubMed ID: 25242323
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer.
    Theurillat JP; Udeshi ND; Errington WJ; Svinkina T; Baca SC; Pop M; Wild PJ; Blattner M; Groner AC; Rubin MA; Moch H; Prive GG; Carr SA; Garraway LA
    Science; 2014 Oct; 346(6205):85-89. PubMed ID: 25278611
    [TBL] [Abstract][Full Text] [Related]  

  • 63. H3K36 trimethylation-mediated biological functions in cancer.
    Xiao C; Fan T; Tian H; Zheng Y; Zhou Z; Li S; Li C; He J
    Clin Epigenetics; 2021 Oct; 13(1):199. PubMed ID: 34715919
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Elevated levels of the methyltransferase SETD2 causes transcription and alternative splicing changes resulting in oncogenic phenotypes.
    Bhattacharya S; Reddy D; Zhang N; Li H; Workman JL
    Front Cell Dev Biol; 2022; 10():945668. PubMed ID: 36035998
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Histone methyltransferase SETD2 regulates osteosarcoma cell growth and chemosensitivity by suppressing Wnt/β-catenin signaling.
    Jiang C; He C; Wu Z; Li F; Xiao J
    Biochem Biophys Res Commun; 2018 Jul; 502(3):382-388. PubMed ID: 29842882
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Loss of SETD2, but not H3K36me3, correlates with aggressive clinicopathological features of clear cell renal cell carcinoma patients.
    Liu L; Guo R; Zhang X; Liang Y; Kong F; Wang J; Xu Z
    Biosci Trends; 2017 May; 11(2):214-220. PubMed ID: 28260718
    [TBL] [Abstract][Full Text] [Related]  

  • 67. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair.
    Kanu N; Grönroos E; Martinez P; Burrell RA; Yi Goh X; Bartkova J; Maya-Mendoza A; Mistrík M; Rowan AJ; Patel H; Rabinowitz A; East P; Wilson G; Santos CR; McGranahan N; Gulati S; Gerlinger M; Birkbak NJ; Joshi T; Alexandrov LB; Stratton MR; Powles T; Matthews N; Bates PA; Stewart A; Szallasi Z; Larkin J; Bartek J; Swanton C
    Oncogene; 2015 Nov; 34(46):5699-708. PubMed ID: 25728682
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects.
    Simon JM; Hacker KE; Singh D; Brannon AR; Parker JS; Weiser M; Ho TH; Kuan PF; Jonasch E; Furey TS; Prins JF; Lieb JD; Rathmell WK; Davis IJ
    Genome Res; 2014 Feb; 24(2):241-50. PubMed ID: 24158655
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Preparation of the ubiquitination-triggered active form of SETDB1 in Escherichia coli for biochemical and structural analyses.
    Funyu T; Kanemaru Y; Onoda H; Arita K
    J Biochem; 2021 Dec; 170(5):655-662. PubMed ID: 34324684
    [TBL] [Abstract][Full Text] [Related]  

  • 70.
    Su X; Zhang J; Mouawad R; Compérat E; Rouprêt M; Allanic F; Parra J; Bitker MO; Thompson EJ; Gowrishankar B; Houldsworth J; Weinstein JN; Tost J; Broom BM; Khayat D; Spano JP; Tannir NM; Malouf GG
    Cancer Res; 2017 Sep; 77(18):4835-4845. PubMed ID: 28754676
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer.
    Jin X; Wang J; Gao K; Zhang P; Yao L; Tang Y; Tang L; Ma J; Xiao J; Zhang E; Zhu J; Zhang B; Zhao SM; Li Y; Ren S; Huang H; Yu L; Wang C
    PLoS Genet; 2017 Apr; 13(4):e1006748. PubMed ID: 28448495
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deficiency of Histone Methyltransferase SET Domain-Containing 2 in Liver Leads to Abnormal Lipid Metabolism and HCC.
    Li XJ; Li QL; Ju LG; Zhao C; Zhao LS; Du JW; Wang Y; Zheng L; Song BL; Li LY; Li L; Wu M
    Hepatology; 2021 May; 73(5):1797-1815. PubMed ID: 33058300
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes.
    Xie P; Tian C; An L; Nie J; Lu K; Xing G; Zhang L; He F
    Cell Signal; 2008 Sep; 20(9):1671-8. PubMed ID: 18585004
    [TBL] [Abstract][Full Text] [Related]  

  • 74. H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation.
    Huang Y; Gu L; Li GM
    J Biol Chem; 2018 May; 293(20):7811-7823. PubMed ID: 29610279
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing.
    Pradeepa MM; Sutherland HG; Ule J; Grimes GR; Bickmore WA
    PLoS Genet; 2012; 8(5):e1002717. PubMed ID: 22615581
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Downregulation of the histone methyltransferase SETD2 promotes imatinib resistance in chronic myeloid leukaemia cells.
    Sheng Y; Ji Z; Zhao H; Wang J; Cheng C; Xu W; Wang X; He Y; Liu K; Li L; Voeltzel T; Maguer-Satta V; Gao WQ; Zhu HH
    Cell Prolif; 2019 Jul; 52(4):e12611. PubMed ID: 31054182
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of functional cooperative mutations of SETD2 in human acute leukemia.
    Zhu X; He F; Zeng H; Ling S; Chen A; Wang Y; Yan X; Wei W; Pang Y; Cheng H; Hua C; Zhang Y; Yang X; Lu X; Cao L; Hao L; Dong L; Zou W; Wu J; Li X; Zheng S; Yan J; Zhou J; Zhang L; Mi S; Wang X; Zhang L; Zou Y; Chen Y; Geng Z; Wang J; Zhou J; Liu X; Wang J; Yuan W; Huang G; Cheng T; Wang QF
    Nat Genet; 2014 Mar; 46(3):287-93. PubMed ID: 24509477
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Histone methyltransferase SETD2 inhibits tumor growth via suppressing CXCL1-mediated activation of cell cycle in lung adenocarcinoma.
    Zhou Y; Zheng X; Xu B; Deng H; Chen L; Jiang J
    Aging (Albany NY); 2020 Nov; 12(24):25189-25206. PubMed ID: 33223508
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression.
    Ma J; Chang K; Peng J; Shi Q; Gan H; Gao K; Feng K; Xu F; Zhang H; Dai B; Zhu Y; Shi G; Shen Y; Zhu Y; Qin X; Li Y; Zhang P; Ye D; Wang C
    J Exp Clin Cancer Res; 2018 Jul; 37(1):145. PubMed ID: 29996942
    [TBL] [Abstract][Full Text] [Related]  

  • 80. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism.
    Larschan E; Alekseyenko AA; Gortchakov AA; Peng S; Li B; Yang P; Workman JL; Park PJ; Kuroda MI
    Mol Cell; 2007 Oct; 28(1):121-33. PubMed ID: 17936709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.