BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 27614134)

  • 21. Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions.
    Barbot M; Jans DC; Schulz C; Denkert N; Kroppen B; Hoppert M; Jakobs S; Meinecke M
    Cell Metab; 2015 May; 21(5):756-63. PubMed ID: 25955211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mitochondrial contact site complex, a determinant of mitochondrial architecture.
    Harner M; Körner C; Walther D; Mokranjac D; Kaesmacher J; Welsch U; Griffith J; Mann M; Reggiori F; Neupert W
    EMBO J; 2011 Oct; 30(21):4356-70. PubMed ID: 22009199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria.
    Aaltonen MJ; Friedman JR; Osman C; Salin B; di Rago JP; Nunnari J; Langer T; Tatsuta T
    J Cell Biol; 2016 Jun; 213(5):525-34. PubMed ID: 27241913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Yin & Yang of Mitochondrial Architecture - Interplay of MICOS and F
    Rampelt H; van der Laan M
    Microb Cell; 2017 Aug; 4(8):236-239. PubMed ID: 28845421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mic10 Oligomerization Pinches off Mitochondrial Cristae.
    Milenkovic D; Larsson NG
    Cell Metab; 2015 May; 21(5):660-1. PubMed ID: 25955201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation.
    Stephan T; Brüser C; Deckers M; Steyer AM; Balzarotti F; Barbot M; Behr TS; Heim G; Hübner W; Ilgen P; Lange F; Pacheu-Grau D; Pape JK; Stoldt S; Huser T; Hell SW; Möbius W; Rehling P; Riedel D; Jakobs S
    EMBO J; 2020 Jul; 39(14):e104105. PubMed ID: 32567732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial Contact Site and Cristae Organization System and F
    Cadena LR; Gahura O; Panicucci B; Zíková A; Hashimi H
    mSphere; 2021 Jun; 6(3):e0032721. PubMed ID: 34133204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g.
    Rabl R; Soubannier V; Scholz R; Vogel F; Mendl N; Vasiljev-Neumeyer A; Körner C; Jagasia R; Keil T; Baumeister W; Cyrklaff M; Neupert W; Reichert AS
    J Cell Biol; 2009 Jun; 185(6):1047-63. PubMed ID: 19528297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial inner membrane protein, Mic60/mitofilin in mammalian organ protection.
    Feng Y; Madungwe NB; Bopassa JC
    J Cell Physiol; 2019 Apr; 234(4):3383-3393. PubMed ID: 30259514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Oxidation Status of Mic19 Regulates MICOS Assembly.
    Sakowska P; Jans DC; Mohanraj K; Riedel D; Jakobs S; Chacinska A
    Mol Cell Biol; 2015 Dec; 35(24):4222-37. PubMed ID: 26416881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of the MICOS complex leads to an aberrant cristae structure and an unexpected, pronounced lifespan extension in Podospora anserina.
    Warnsmann V; Marschall LM; Meeßen AC; Wolters M; Schürmanns L; Basoglu M; Eimer S; Osiewacz HD
    J Cell Biochem; 2022 Aug; 123(8):1306-1326. PubMed ID: 35616269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The highly diverged trypanosomal MICOS complex is organized in a nonessential integral membrane and an essential peripheral module.
    Eichenberger C; Oeljeklaus S; Bruggisser J; Mani J; Haenni B; Kaurov I; Niemann M; Zuber B; Lukeš J; Hashimi H; Warscheid B; Schimanski B; Schneider A
    Mol Microbiol; 2019 Dec; 112(6):1731-1743. PubMed ID: 31541487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MICOS subcomplexes assemble independently on the mitochondrial inner membrane in proximity to ER contact sites.
    Tirrell PS; Nguyen KN; Luby-Phelps K; Friedman JR
    J Cell Biol; 2020 Nov; 219(11):. PubMed ID: 33053165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation.
    Jimenez L; Laporte D; Duvezin-Caubet S; Courtout F; Sagot I
    J Cell Sci; 2014 Feb; 127(Pt 4):719-26. PubMed ID: 24338369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins.
    Pape JK; Stephan T; Balzarotti F; Büchner R; Lange F; Riedel D; Jakobs S; Hell SW
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20607-20614. PubMed ID: 32788360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathways shaping the mitochondrial inner membrane.
    Klecker T; Westermann B
    Open Biol; 2021 Dec; 11(12):210238. PubMed ID: 34847778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling.
    Plecitá-Hlavatá L; Ježek P
    Int J Biochem Cell Biol; 2016 Nov; 80():31-50. PubMed ID: 27640755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization.
    Alkhaja AK; Jans DC; Nikolov M; Vukotic M; Lytovchenko O; Ludewig F; Schliebs W; Riedel D; Urlaub H; Jakobs S; Deckers M
    Mol Biol Cell; 2012 Jan; 23(2):247-57. PubMed ID: 22114354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1.
    Meeusen S; DeVay R; Block J; Cassidy-Stone A; Wayson S; McCaffery JM; Nunnari J
    Cell; 2006 Oct; 127(2):383-95. PubMed ID: 17055438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Origin of Mitochondrial Cristae from Alphaproteobacteria.
    Muñoz-Gómez SA; Wideman JG; Roger AJ; Slamovits CH
    Mol Biol Evol; 2017 Apr; 34(4):943-956. PubMed ID: 28087774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.