BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 27614253)

  • 1. Bacterial toxins activation of abbreviated urea cycle in porcine cerebral vascular smooth muscle cells.
    Mishra RG; Tseng TL; Chen MF; Chen PY; Lee TJ
    Vascul Pharmacol; 2016 Dec; 87():110-120. PubMed ID: 27614253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphologic evidence for L-citrulline conversion to L-arginine via the argininosuccinate pathway in porcine cerebral perivascular nerves.
    Yu JG; O'Brien WE; Lee TJ
    J Cereb Blood Flow Metab; 1997 Aug; 17(8):884-93. PubMed ID: 9290586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-citrulline conversion to L-arginine in sphenopalatine ganglia and cerebral perivascular nerves in the pig.
    Yu JG; Ishine T; Kimura T; O'Brien WE; Lee TJ
    Am J Physiol; 1997 Nov; 273(5):H2192-9. PubMed ID: 9374753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the L-citrulline/L-arginine cycle in iNANC nerve-mediated nitric oxide production and airway smooth muscle relaxation in allergic asthma.
    Maarsingh H; Leusink J; Zaagsma J; Meurs H
    Eur J Pharmacol; 2006 Sep; 546(1-3):171-6. PubMed ID: 16919264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis.
    Hattori Y; Campbell EB; Gross SS
    J Biol Chem; 1994 Apr; 269(13):9405-8. PubMed ID: 7511585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-Citrulline recycle for synthesis of NO in cerebral perivascular nerves and endothelial cells.
    Lee TJ; Yu JG
    Ann N Y Acad Sci; 2002 May; 962():73-80. PubMed ID: 12076964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internally applied endotoxin and the activation of BK channels in cerebral artery smooth muscle via a nitric oxide-like pathway.
    Hoang LM; Mathers DA
    Br J Pharmacol; 1998 Jan; 123(1):5-12. PubMed ID: 9484848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of endogenous nitric oxide synthesis in congenital urea cycle enzyme defects.
    Nagasaka H; Tsukahara H; Yorifuji T; Miida T; Murayama K; Tsuruoka T; Takatani T; Kanazawa M; Kobayashi K; Okano Y; Takayanagi M
    Metabolism; 2009 Mar; 58(3):278-82. PubMed ID: 19217439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the urea cycle enzyme genes in nitric oxide synthesis.
    Mori M; Gotoh T; Nagasaki A; Takiguchi M; Sonoki T
    J Inherit Metab Dis; 1998; 21 Suppl 1():59-71. PubMed ID: 9686345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hypertension on nitric oxide synthase expression and vascular effects of lipopolysaccharide in rat mesenteric arteries.
    Briones AM; Alonso MJ; Marín J; Balfagón G; Salaices M
    Br J Pharmacol; 2000 Sep; 131(2):185-94. PubMed ID: 10991910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The induction and detection in vitro of iNOS in the porcine basilar artery.
    Mathewson AM; McPhaden AR; Wadsworth RM
    J Immunol Methods; 2003 Aug; 279(1-2):163-71. PubMed ID: 12969557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argininosuccinate synthetase overexpression in vascular smooth muscle cells potentiates immunostimulant-induced NO production.
    Xie L; Gross SS
    J Biol Chem; 1997 Jun; 272(26):16624-30. PubMed ID: 9195976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological characterization of guanidinoethyldisulphide (GED), a novel inhibitor of nitric oxide synthase with selectivity towards the inducible isoform.
    Szabó C; Bryk R; Zingarelli B; Southan GJ; Gahman TC; Bhat V; Salzman AL; Wolff DJ
    Br J Pharmacol; 1996 Aug; 118(7):1659-68. PubMed ID: 8842429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accessibility of endothelial and inducible nitric oxide synthase to the intracellular citrulline-arginine regeneration pathway.
    Shen LJ; Beloussow K; Shen WC
    Biochem Pharmacol; 2005 Jan; 69(1):97-104. PubMed ID: 15588718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of excess tetrahydrobiopterin during nitric oxide production from inducible nitric oxide synthase in LPS-treated rat aorta.
    Shimizu S; Ishii M; Kawakami Y; Kiuchi Y; Momose K; Yamamoto T
    Life Sci; 1999; 65(26):2769-79. PubMed ID: 10622266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered L-arginine/nitric oxide synthase/nitric oxide pathway in the vascular adventitia of rats with sepsis.
    Jia YX; Pan CS; Yang JH; Liu XH; Yuan WJ; Zhao J; Tang CS; Qi YF
    Clin Exp Pharmacol Physiol; 2006 Dec; 33(12):1202-8. PubMed ID: 17184502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of inducible nitric oxide synthase in lipopolysaccharide-mediated hyporeactivity to vasoconstrictors differs among isolated rat arteries.
    Piepot HA; Groeneveld AB; van Lambalgen AA; Sipkema P
    Clin Sci (Lond); 2002 Mar; 102(3):297-305. PubMed ID: 11869170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citrulline uptake in rat cerebral cortex slices: modulation by Thioacetamide -Induced hepatic failure.
    Zielińska M; Obara-Michlewska M; Hilgier W; Albrecht J
    Metab Brain Dis; 2014 Dec; 29(4):1053-60. PubMed ID: 24385142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism.
    Rodríguez A; Fortuño A; Gómez-Ambrosi J; Zalba G; Díez J; Frühbeck G
    Endocrinology; 2007 Jan; 148(1):324-31. PubMed ID: 17038553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valproic acid up-regulates the whole NO-citrulline cycle for potent iNOS-NO signaling to promote neuronal differentiation of adipose tissue-derived stem cells.
    Hayashi D; Okubo T; Suzuki T; Miyazaki Y; Tanaka K; Usami M; Takizawa T
    Nitric Oxide; 2021 Jan; 106():35-44. PubMed ID: 33129925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.