These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 27614764)
61. Cytokine profiles in Japanese patients with chronic rhinosinusitis. Sejima T; Holtappels G; Kikuchi H; Imayoshi S; Ichimura K; Bachert C Allergol Int; 2012 Mar; 61(1):115-22. PubMed ID: 22377524 [TBL] [Abstract][Full Text] [Related]
62. Hypoxia-inducible factor 1α activates the NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. Zhong B; Sun S; Tan KS; Ong HH; Du J; Liu F; Liu Y; Liu S; Ba L; Li J; Wang Y; Liu J J Allergy Clin Immunol; 2023 Dec; 152(6):1444-1459.e14. PubMed ID: 37777019 [TBL] [Abstract][Full Text] [Related]
63. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Gong Z; Zhou J; Li H; Gao Y; Xu C; Zhao S; Chen Y; Cai W; Wu J Mol Nutr Food Res; 2015 Nov; 59(11):2132-42. PubMed ID: 26250869 [TBL] [Abstract][Full Text] [Related]
64. Increased Expression of TXNIP Facilitates Oxidative Stress in Nasal Epithelial Cells of Patients With Chronic Rhinosinusitis With Nasal Polyps. Lin H; Ba G; Tang R; Li M; Li Z; Li D; Ye H; Zhang W Am J Rhinol Allergy; 2021 Sep; 35(5):607-614. PubMed ID: 33375816 [TBL] [Abstract][Full Text] [Related]
65. Cyclooxygenase-2 regulates NLRP3 inflammasome-derived IL-1β production. Hua KF; Chou JC; Ka SM; Tasi YL; Chen A; Wu SH; Chiu HW; Wong WT; Wang YF; Tsai CL; Ho CL; Lin CH J Cell Physiol; 2015 Apr; 230(4):863-74. PubMed ID: 25294243 [TBL] [Abstract][Full Text] [Related]
66. Hepatitis B core antigen can regulate NLRP3 inflammasome pathway in HepG2 cells. Ding X; Lei Q; Li T; Li L; Qin B J Med Virol; 2019 Aug; 91(8):1528-1536. PubMed ID: 31017673 [TBL] [Abstract][Full Text] [Related]
67. [Expression and pathological role of galectin-10 in different types of nasal polyps]. Li CH; Liu X; Wu WX; Wang YJ; Ai YF; Liu HB Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Sep; 55(9):837-844. PubMed ID: 32911886 [No Abstract] [Full Text] [Related]
68. Upregulation of NLRP3 inflammasome components in Mooren's ulcer. Li Z; Wei C; Wang S; Liu T; Zhai H; Shi W Graefes Arch Clin Exp Ophthalmol; 2017 Mar; 255(3):607-612. PubMed ID: 27796668 [TBL] [Abstract][Full Text] [Related]
69. Hyperglucose contributes to periodontitis: involvement of the NLRP3 pathway by engaging the innate immunity of oral gingival epithelium. Huang X; Yang X; Ni J; Xie B; Liu Y; Xuan D; Zhang J J Periodontol; 2015 Feb; 86(2):327-35. PubMed ID: 25325516 [TBL] [Abstract][Full Text] [Related]
70. TSLP regulates eotaxin-1 production by nasal epithelial cells from patients with eosinophilic CRSwNP. Wang WW; Lu DM; Zheng M; Zhang JG; Zhang B Rhinology; 2018 Dec; 56(4):370-377. PubMed ID: 29911210 [TBL] [Abstract][Full Text] [Related]
71. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. Rühl S; Broz P Eur J Immunol; 2015 Oct; 45(10):2927-36. PubMed ID: 26173909 [TBL] [Abstract][Full Text] [Related]
72. Role of IFN-γ, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps. Jiao J; Duan S; Meng N; Li Y; Fan E; Zhang L Clin Exp Allergy; 2016 Mar; 46(3):449-60. PubMed ID: 26399381 [TBL] [Abstract][Full Text] [Related]
73. Expression of heme oxygenase-1 in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps: modulation by cytokines. Yu Z; Wang Y; Zhang J; Li L; Wu X; Ma R; Han M; Xu G; Wen W; Li H Int Forum Allergy Rhinol; 2015 Aug; 5(8):734-40. PubMed ID: 25907676 [TBL] [Abstract][Full Text] [Related]
74. Agonist of PPAR-γ Reduced Epithelial-Mesenchymal Transition in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps via Inhibition of High Mobility Group Box1. Yang P; Chen S; Zhong G; Kong W; Wang Y Int J Med Sci; 2019; 16(12):1631-1641. PubMed ID: 31839751 [TBL] [Abstract][Full Text] [Related]
75. The anti-inflammatory effects of baicalin through suppression of NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Ye C; Li S; Yao W; Xu L; Qiu Y; Liu Y; Wu Z; Hou Y Innate Immun; 2016 Apr; 22(3):196-204. PubMed ID: 26865578 [TBL] [Abstract][Full Text] [Related]
76. Interleukin-25 and mucosal T cells in noneosinophilic and eosinophilic chronic rhinosinusitis. Iinuma T; Okamoto Y; Yamamoto H; Inamine-Sasaki A; Ohki Y; Sakurai T; Funakoshi U; Yonekura S; Sakurai D; Hirahara K; Nakayama T Ann Allergy Asthma Immunol; 2015 Apr; 114(4):289-98. PubMed ID: 25704964 [TBL] [Abstract][Full Text] [Related]
77. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. Honda H; Nagai Y; Matsunaga T; Okamoto N; Watanabe Y; Tsuneyama K; Hayashi H; Fujii I; Ikutani M; Hirai Y; Muraguchi A; Takatsu K J Leukoc Biol; 2014 Dec; 96(6):1087-100. PubMed ID: 25210146 [TBL] [Abstract][Full Text] [Related]
78. The Roles of Autophagy, Mitophagy, and the Akt/mTOR Pathway in the Pathogenesis of Chronic Rhinosinusitis with Nasal Polyps. Wang C; Zhou ML; Liu YC; Cheng KJ J Immunol Res; 2022; 2022():2273121. PubMed ID: 35747690 [TBL] [Abstract][Full Text] [Related]
79. Bidirectional Crosstalk between C5a Receptors and the NLRP3 Inflammasome in Macrophages and Monocytes. Haggadone MD; Grailer JJ; Fattahi F; Zetoune FS; Ward PA Mediators Inflamm; 2016; 2016():1340156. PubMed ID: 27382187 [TBL] [Abstract][Full Text] [Related]
80. Increased level of interleukin-13, but not interleukin-4 and interferon-γ in chronic rhinosinusitis with nasal polyps. Nabavi M; Arshi S; Bahrami A; Aryan Z; Bemanian MH; Esmaeilzadeh H; Jalali F; Pousti SB; Rezaei N Allergol Immunopathol (Madr); 2014; 42(5):465-71. PubMed ID: 23969075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]