These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 27614786)
1. Immediate and potential long-term effects of consecutive heat waves on the photosynthetic performance and water balance in Douglas-fir. Duarte AG; Katata G; Hoshika Y; Hossain M; Kreuzwieser J; Arneth A; Ruehr NK J Plant Physiol; 2016 Oct; 205():57-66. PubMed ID: 27614786 [TBL] [Abstract][Full Text] [Related]
2. Water availability as dominant control of heat stress responses in two contrasting tree species. Ruehr NK; Gast A; Weber C; Daub B; Arneth A Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055 [TBL] [Abstract][Full Text] [Related]
3. An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. McDowell NG; Phillips N; Lunch C; Bond BJ; Ryan MG Tree Physiol; 2002 Aug; 22(11):763-74. PubMed ID: 12184980 [TBL] [Abstract][Full Text] [Related]
4. Responses of gas exchange to reversible changes in whole-plant transpiration rate in two conifer species. Warren CR; Livingston NJ; Turpin DH Tree Physiol; 2003 Aug; 23(12):793-803. PubMed ID: 12865245 [TBL] [Abstract][Full Text] [Related]
5. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Slot M; Winter K Plant Cell Environ; 2017 Dec; 40(12):3055-3068. PubMed ID: 28926102 [TBL] [Abstract][Full Text] [Related]
6. Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus x euroamericana in a mini-stand experiment. Ripullone F; Grassi G; Lauteri M; Borghetti M Tree Physiol; 2003 Feb; 23(2):137-44. PubMed ID: 12533308 [TBL] [Abstract][Full Text] [Related]
7. Hydraulic architecture and photosynthetic capacity as constraints on release from suppression in Douglas-fir and western hemlock. Renninger HJ; Meinzer FC; Gartner BL Tree Physiol; 2007 Jan; 27(1):33-42. PubMed ID: 17169904 [TBL] [Abstract][Full Text] [Related]
8. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263 [TBL] [Abstract][Full Text] [Related]
9. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Woodruff DR; McCulloh KA; Warren JM; Meinzer FC; Lachenbruch B Plant Cell Environ; 2007 May; 30(5):559-69. PubMed ID: 17407534 [TBL] [Abstract][Full Text] [Related]
10. Water stress decreases the transfer conductance of Douglas-fir (Pseudotsuga menziesii) seedlings. Warren CR; Livingston NJ; Turpin DH Tree Physiol; 2004 Sep; 24(9):971-9. PubMed ID: 15234894 [TBL] [Abstract][Full Text] [Related]
11. Comparison of leaf gas exchange and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring Douglas-fir and European beech. Bögelein R; Hassdenteufel M; Thomas FM; Werner W Plant Cell Environ; 2012 Jul; 35(7):1245-57. PubMed ID: 22292498 [TBL] [Abstract][Full Text] [Related]
12. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Xu L; Baldocchi DD Tree Physiol; 2003 Sep; 23(13):865-77. PubMed ID: 14532010 [TBL] [Abstract][Full Text] [Related]
13. Enhanced tolerance of photosynthesis to high-light and drought stress in Pseudotsuga menziesii seedlings grown in ultraviolet-B radiation. Poulson ME; Donahue RA; Konvalinka J; Boeger MR Tree Physiol; 2002 Aug; 22(12):829-38. PubMed ID: 12184972 [TBL] [Abstract][Full Text] [Related]
14. Canopy and hydraulic conductance in young, mature and old Douglas-fir trees. Phillips N; Bond BJ; McDowell NG; Ryan MG Tree Physiol; 2002 Feb; 22(2-3):205-11. PubMed ID: 11830417 [TBL] [Abstract][Full Text] [Related]
15. Variation in nitrogen supply changes water-use efficiency of Pseudotsuga menziesii and Populus x euroamericana; a comparison of three approaches to determine water-use efficiency. Ripullone F; Lauteri M; Grassi G; Amato M; Borghetti M Tree Physiol; 2004 Jun; 24(6):671-9. PubMed ID: 15059767 [TBL] [Abstract][Full Text] [Related]
16. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity. Andrews SF; Flanagan LB; Sharp EJ; Cai T Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220 [TBL] [Abstract][Full Text] [Related]
17. Leaf stomatal configuration and photosynthetic traits jointly affect leaf water use efficiency in forests along climate gradients. Pan S; Wang X; Yan Z; Wu J; Guo L; Peng Z; Wu Y; Li J; Wang B; Su Y; Liu L New Phytol; 2024 Nov; 244(4):1250-1262. PubMed ID: 39223910 [TBL] [Abstract][Full Text] [Related]
18. Photosynthetic plasticity of a tropical tree species, Tabebuia rosea, in response to elevated temperature and [CO Slot M; Rifai SW; Winter K Plant Cell Environ; 2021 Jul; 44(7):2347-2364. PubMed ID: 33759203 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of photosynthesis and stomatal conductance in the shrubland species manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides) for the estimation of annual canopy carbon uptake. Whitehead D; Walcroft AS; Scott NA; Townsend JA; Trotter CM; Rogers GN Tree Physiol; 2004 Jul; 24(7):795-804. PubMed ID: 15123451 [TBL] [Abstract][Full Text] [Related]
20. Modelling functional trait acclimation for trees of different height in a forest light gradient: emergent patterns driven by carbon gain maximization. Sterck F; Schieving F Tree Physiol; 2011 Sep; 31(9):1024-37. PubMed ID: 21893522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]