BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

668 related articles for article (PubMed ID: 27615792)

  • 1. Modulation of the Direction and Magnitude of Hebbian Plasticity in Human Motor Cortex by Stimulus Intensity and Concurrent Inhibition.
    Cash RFH; Jegatheeswaran G; Ni Z; Chen R
    Brain Stimul; 2017; 10(1):83-90. PubMed ID: 27615792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Cerebellar Degeneration on Human Sensori-motor Plasticity.
    Dubbioso R; Pellegrino G; Antenora A; De Michele G; Filla A; Santoro L; Manganelli F
    Brain Stimul; 2015; 8(6):1144-50. PubMed ID: 26140957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex.
    Ziemann U; Ilić TV; Pauli C; Meintzschel F; Ruge D
    J Neurosci; 2004 Feb; 24(7):1666-72. PubMed ID: 14973238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation.
    Müller-Dahlhaus JF; Orekhov Y; Liu Y; Ziemann U
    Exp Brain Res; 2008 May; 187(3):467-75. PubMed ID: 18320180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation.
    Müller JF; Orekhov Y; Liu Y; Ziemann U
    Eur J Neurosci; 2007 Jun; 25(11):3461-8. PubMed ID: 17553015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Hebbian-like plasticity in the ventral premotor - primary motor network.
    Casarotto A; Dolfini E; Cardellicchio P; Fadiga L; D'Ausilio A; Koch G
    J Physiol; 2023 Jan; 601(1):211-226. PubMed ID: 36327142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Paired Associative Stimulation on Motor Cortex Excitability in Rats.
    Zhang XY; Sui YF; Guo TC; Wang SH; Hu Y; Lu YS
    Curr Med Sci; 2018 Oct; 38(5):903-909. PubMed ID: 30341527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between short latency afferent inhibition and long interval intracortical inhibition.
    Udupa K; Ni Z; Gunraj C; Chen R
    Exp Brain Res; 2009 Nov; 199(2):177-83. PubMed ID: 19730839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation.
    Murakami T; Sakuma K; Nomura T; Uemura Y; Hashimoto I; Nakashima K
    Exp Brain Res; 2008 Jan; 184(3):339-47. PubMed ID: 17724581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occlusion of bidirectional plasticity by preceding low-frequency stimulation in the human motor cortex.
    Delvendahl I; Jung NH; Mainberger F; Kuhnke NG; Cronjaeger M; Mall V
    Clin Neurophysiol; 2010 Apr; 121(4):594-602. PubMed ID: 20074998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning.
    Rosenkranz K; Kacar A; Rothwell JC
    J Neurosci; 2007 Oct; 27(44):12058-66. PubMed ID: 17978047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
    Ferreri F; Ponzo D; Hukkanen T; Mervaala E; Könönen M; Pasqualetti P; Vecchio F; Rossini PM; Määttä S
    J Neurophysiol; 2012 Jul; 108(1):314-23. PubMed ID: 22457460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex.
    Pilurzi G; Ginatempo F; Mercante B; Cattaneo L; Pavesi G; Rothwell JC; Deriu F
    J Physiol; 2020 Feb; 598(4):839-851. PubMed ID: 31876950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of motor learning by a paired associative stimulation protocol inducing LTD-like effects.
    Sasaki T; Shirota Y; Kodama S; Togashi N; Sugiyama Y; Tokushige SI; Inomata-Terada S; Terao Y; Ugawa Y; Toda T; Hamada M
    Brain Stimul; 2018; 11(6):1314-1321. PubMed ID: 30093288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex.
    Noda Y; Cash RF; Zomorrodi R; Dominguez LG; Farzan F; Rajji TK; Barr MS; Chen R; Daskalakis ZJ; Blumberger DM
    J Neurophysiol; 2016 Sep; 116(3):938-48. PubMed ID: 27226450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostatic modulation of stimulation-dependent plasticity in human motor cortex.
    Ilić NV; Milanović S; Krstić J; Bajec DD; Grajić M; Ilić TV
    Physiol Res; 2011; 60(Suppl 1):S107-12. PubMed ID: 21777019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude.
    Miyaguchi S; Kojima S; Sasaki R; Tamaki H; Onishi H
    Neuroreport; 2017 Dec; 28(18):1202-1207. PubMed ID: 29064955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex.
    Wolters A; Sandbrink F; Schlottmann A; Kunesch E; Stefan K; Cohen LG; Benecke R; Classen J
    J Neurophysiol; 2003 May; 89(5):2339-45. PubMed ID: 12612033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS.
    Fischer M; Orth M
    Brain Stimul; 2011 Oct; 4(4):202-9. PubMed ID: 22032735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.