These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 27616193)
1. RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis. Liu C; Li CP; Wang JJ; Shan K; Liu X; Yan B Biochem Biophys Res Commun; 2016 Oct; 479(2):198-203. PubMed ID: 27616193 [TBL] [Abstract][Full Text] [Related]
2. RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction. Shan K; Li CP; Liu C; Liu X; Yan B Biochem Biophys Res Commun; 2017 Jan; 482(4):777-783. PubMed ID: 27876564 [TBL] [Abstract][Full Text] [Related]
3. Exendin-4 protects retinal cells from early diabetes in Goto-Kakizaki rats by increasing the Bcl-2/Bax and Bcl-xL/Bax ratios and reducing reactive gliosis. Fan Y; Liu K; Wang Q; Ruan Y; Zhang Y; Ye W Mol Vis; 2014; 20():1557-68. PubMed ID: 25489228 [TBL] [Abstract][Full Text] [Related]
4. Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model. Kumar S; Zhuo L Exp Eye Res; 2010 Oct; 91(4):530-6. PubMed ID: 20655908 [TBL] [Abstract][Full Text] [Related]
5. Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Nakazawa T; Takeda M; Lewis GP; Cho KS; Jiao J; Wilhelmsson U; Fisher SK; Pekny M; Chen DF; Miller JW Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2760-8. PubMed ID: 17525210 [TBL] [Abstract][Full Text] [Related]
6. Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. Bargagna-Mohan P; Paranthan RR; Hamza A; Dimova N; Trucchi B; Srinivasan C; Elliott GI; Zhan CG; Lau DL; Zhu H; Kasahara K; Inagaki M; Cambi F; Mohan R J Biol Chem; 2010 Mar; 285(10):7657-69. PubMed ID: 20048155 [TBL] [Abstract][Full Text] [Related]
7. Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response. Cui B; Sun JH; Xiang FF; Liu L; Li WJ Exp Eye Res; 2012 May; 98():37-43. PubMed ID: 22449442 [TBL] [Abstract][Full Text] [Related]
8. Glial cell reactivity in a porcine model of retinal detachment. Iandiev I; Uckermann O; Pannicke T; Wurm A; Tenckhoff S; Pietsch UC; Reichenbach A; Wiedemann P; Bringmann A; Uhlmann S Invest Ophthalmol Vis Sci; 2006 May; 47(5):2161-71. PubMed ID: 16639028 [TBL] [Abstract][Full Text] [Related]
9. Different aspects of gliosis in retinal Muller glia can be induced by CNTF, insulin, and FGF2 in the absence of damage. Fischer AJ; Omar G; Eubanks J; McGuire CR; Dierks BD; Reh TA Mol Vis; 2004 Dec; 10():973-86. PubMed ID: 15623987 [TBL] [Abstract][Full Text] [Related]
11. The changes of potassium currents in RCS rat Müller cell during retinal degeneration. Zhao T; Li Y; Weng C; Yin Z Brain Res; 2012 Jan; 1427():78-87. PubMed ID: 22055109 [TBL] [Abstract][Full Text] [Related]
12. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Barber AJ; Antonetti DA; Gardner TW Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3561-8. PubMed ID: 11006253 [TBL] [Abstract][Full Text] [Related]
13. Study of retinal alterations in a high fat diet-induced type ii diabetes rodent: Meriones shawi. Hammoum I; Mbarek S; Dellaa A; Dubus E; Baccouche B; Azaiz R; Charfeddine R; Picaud S; Ben Chaouacha-Chekir R Acta Histochem; 2017 Jan; 119(1):1-9. PubMed ID: 27265809 [TBL] [Abstract][Full Text] [Related]
14. RNAi-mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Müller glial cell hypertrophy in progressive retinal degeneration. Hippert C; Graca AB; Basche M; Kalargyrou AA; Georgiadis A; Ribeiro J; Matsuyama A; Aghaizu N; Bainbridge JW; Smith AJ; Ali RR; Pearson RA Glia; 2021 Sep; 69(9):2272-2290. PubMed ID: 34029407 [TBL] [Abstract][Full Text] [Related]
15. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Inman DM; Horner PJ Glia; 2007 Jul; 55(9):942-53. PubMed ID: 17457855 [TBL] [Abstract][Full Text] [Related]
16. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Yan B; Yao J; Liu JY; Li XM; Wang XQ; Li YJ; Tao ZF; Song YC; Chen Q; Jiang Q Circ Res; 2015 Mar; 116(7):1143-56. PubMed ID: 25587098 [TBL] [Abstract][Full Text] [Related]
17. Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Shan K; Jiang Q; Wang XQ; Wang YN; Yang H; Yao MD; Liu C; Li XM; Yao J; Liu B; Zhang YY; J Y; Yan B Cell Death Dis; 2016 Jun; 7(6):e2248. PubMed ID: 27253412 [TBL] [Abstract][Full Text] [Related]
18. Control of Müller glial cell proliferation and activation following retinal injury. Dyer MA; Cepko CL Nat Neurosci; 2000 Sep; 3(9):873-80. PubMed ID: 10966617 [TBL] [Abstract][Full Text] [Related]
19. Müller Glial Expression of REDD1 Is Required for Retinal Neurodegeneration and Visual Dysfunction in Diabetic Mice. Miller WP; Toro AL; Sunilkumar S; Stevens SA; VanCleave AM; Williamson DL; Barber AJ; Dennis MD Diabetes; 2022 May; 71(5):1051-1062. PubMed ID: 35167652 [TBL] [Abstract][Full Text] [Related]
20. The effect of insulin and glucose levels on retinal glial cell activation and pigment epithelium-derived fibroblast growth factor-2. Layton CJ; Becker S; Osborne NN Mol Vis; 2006 Jan; 12():43-54. PubMed ID: 16446701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]