BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27616193)

  • 1. RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis.
    Liu C; Li CP; Wang JJ; Shan K; Liu X; Yan B
    Biochem Biophys Res Commun; 2016 Oct; 479(2):198-203. PubMed ID: 27616193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction.
    Shan K; Li CP; Liu C; Liu X; Yan B
    Biochem Biophys Res Commun; 2017 Jan; 482(4):777-783. PubMed ID: 27876564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exendin-4 protects retinal cells from early diabetes in Goto-Kakizaki rats by increasing the Bcl-2/Bax and Bcl-xL/Bax ratios and reducing reactive gliosis.
    Fan Y; Liu K; Wang Q; Ruan Y; Zhang Y; Ye W
    Mol Vis; 2014; 20():1557-68. PubMed ID: 25489228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model.
    Kumar S; Zhuo L
    Exp Eye Res; 2010 Oct; 91(4):530-6. PubMed ID: 20655908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin.
    Nakazawa T; Takeda M; Lewis GP; Cho KS; Jiao J; Wilhelmsson U; Fisher SK; Pekny M; Chen DF; Miller JW
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2760-8. PubMed ID: 17525210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis.
    Bargagna-Mohan P; Paranthan RR; Hamza A; Dimova N; Trucchi B; Srinivasan C; Elliott GI; Zhan CG; Lau DL; Zhu H; Kasahara K; Inagaki M; Cambi F; Mohan R
    J Biol Chem; 2010 Mar; 285(10):7657-69. PubMed ID: 20048155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response.
    Cui B; Sun JH; Xiang FF; Liu L; Li WJ
    Exp Eye Res; 2012 May; 98():37-43. PubMed ID: 22449442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial cell reactivity in a porcine model of retinal detachment.
    Iandiev I; Uckermann O; Pannicke T; Wurm A; Tenckhoff S; Pietsch UC; Reichenbach A; Wiedemann P; Bringmann A; Uhlmann S
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2161-71. PubMed ID: 16639028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long Noncoding RNA-Sox2OT Knockdown Alleviates Diabetes Mellitus-Induced Retinal Ganglion Cell (RGC) injury.
    Li CP; Wang SH; Wang WQ; Song SG; Liu XM
    Cell Mol Neurobiol; 2017 Mar; 37(2):361-369. PubMed ID: 27193103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different aspects of gliosis in retinal Muller glia can be induced by CNTF, insulin, and FGF2 in the absence of damage.
    Fischer AJ; Omar G; Eubanks J; McGuire CR; Dierks BD; Reh TA
    Mol Vis; 2004 Dec; 10():973-86. PubMed ID: 15623987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats.
    Guzyk MM; Tykhomyrov AA; Nedzvetsky VS; Prischepa IV; Grinenko TV; Yanitska LV; Kuchmerovska TM
    Neurochem Res; 2016 Oct; 41(10):2526-2537. PubMed ID: 27255598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The changes of potassium currents in RCS rat Müller cell during retinal degeneration.
    Zhao T; Li Y; Weng C; Yin Z
    Brain Res; 2012 Jan; 1427():78-87. PubMed ID: 22055109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group.
    Barber AJ; Antonetti DA; Gardner TW
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3561-8. PubMed ID: 11006253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of retinal alterations in a high fat diet-induced type ii diabetes rodent: Meriones shawi.
    Hammoum I; Mbarek S; Dellaa A; Dubus E; Baccouche B; Azaiz R; Charfeddine R; Picaud S; Ben Chaouacha-Chekir R
    Acta Histochem; 2017 Jan; 119(1):1-9. PubMed ID: 27265809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAi-mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Müller glial cell hypertrophy in progressive retinal degeneration.
    Hippert C; Graca AB; Basche M; Kalargyrou AA; Georgiadis A; Ribeiro J; Matsuyama A; Aghaizu N; Bainbridge JW; Smith AJ; Ali RR; Pearson RA
    Glia; 2021 Sep; 69(9):2272-2290. PubMed ID: 34029407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma.
    Inman DM; Horner PJ
    Glia; 2007 Jul; 55(9):942-53. PubMed ID: 17457855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA.
    Yan B; Yao J; Liu JY; Li XM; Wang XQ; Li YJ; Tao ZF; Song YC; Chen Q; Jiang Q
    Circ Res; 2015 Mar; 116(7):1143-56. PubMed ID: 25587098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction.
    Shan K; Jiang Q; Wang XQ; Wang YN; Yang H; Yao MD; Liu C; Li XM; Yao J; Liu B; Zhang YY; J Y; Yan B
    Cell Death Dis; 2016 Jun; 7(6):e2248. PubMed ID: 27253412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Müller glial cell proliferation and activation following retinal injury.
    Dyer MA; Cepko CL
    Nat Neurosci; 2000 Sep; 3(9):873-80. PubMed ID: 10966617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Müller Glial Expression of REDD1 Is Required for Retinal Neurodegeneration and Visual Dysfunction in Diabetic Mice.
    Miller WP; Toro AL; Sunilkumar S; Stevens SA; VanCleave AM; Williamson DL; Barber AJ; Dennis MD
    Diabetes; 2022 May; 71(5):1051-1062. PubMed ID: 35167652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.