BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27616333)

  • 41. Affinity of Cu+ for the copper-binding domain of the amyloid-β peptide of Alzheimer's disease.
    Feaga HA; Maduka RC; Foster MN; Szalai VA
    Inorg Chem; 2011 Mar; 50(5):1614-8. PubMed ID: 21280585
    [TBL] [Abstract][Full Text] [Related]  

  • 42. His6, His13, and His14 residues in Aβ 1-40 peptide significantly and specifically affect oligomeric equilibria.
    Przygońska K; Pacewicz M; Sadowska W; Poznański J; Bal W; Dadlez M
    Sci Rep; 2019 Jul; 9(1):9449. PubMed ID: 31263161
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Copper(II) and nickel(II) binding sites of peptide containing adjacent histidyl residues.
    Grenács Á; Sanna D; Sóvágó I
    J Inorg Biochem; 2015 Oct; 151():87-93. PubMed ID: 26188480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal binding in amyloid beta-peptides shows intra- and inter-peptide coordination modes.
    Stellato F; Menestrina G; Serra MD; Potrich C; Tomazzolli R; Meyer-Klaucke W; Morante S
    Eur Biophys J; 2006 Apr; 35(4):340-51. PubMed ID: 16404590
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hybrid Bis-Histidine Phenanthroline-Based Ligands to Lessen Aβ-Bound Cu ROS Production: An Illustration of Cu(I) Significance.
    Drommi M; Rulmont C; Esmieu C; Hureau C
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the metal ion (Zn(2+), Cu(2+)) coordination with beta-amyloid peptide: DFT computational study.
    Marino T; Russo N; Toscano M; Pavelka M
    Interdiscip Sci; 2010 Mar; 2(1):57-69. PubMed ID: 20640797
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of amino-acid substitutions on Alzheimer's amyloid-beta peptide-glycosaminoglycan interactions.
    McLaurin J; Fraser PE
    Eur J Biochem; 2000 Nov; 267(21):6353-61. PubMed ID: 11029577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of the hydrophobic interface and transition metal ions on the conformation of amyloidogenic model peptides.
    Hoernke M; Koksch B; Brezesinski G
    Biophys Chem; 2010 Aug; 150(1-3):64-72. PubMed ID: 20347516
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MMP-7 cleaves amyloid β fragment peptides and copper ion inhibits the degradation.
    Taniguchi M; Matsuura K; Nakamura R; Kojima A; Konishi M; Akizawa T
    Biometals; 2017 Oct; 30(5):797-807. PubMed ID: 28871443
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemistry of Alzheimer Disease Amyloid Beta Peptides.
    Chiorcea-Paquim AM; Enache TA; Oliveira-Brett AM
    Curr Med Chem; 2018; 25(33):4066-4083. PubMed ID: 29446720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42.
    Atwood CS; Scarpa RC; Huang X; Moir RD; Jones WD; Fairlie DP; Tanzi RE; Bush AI
    J Neurochem; 2000 Sep; 75(3):1219-33. PubMed ID: 10936205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling the Cu+ binding in the 1-16 region of the amyloid-β peptide involved in Alzheimer's disease.
    Furlan S; Hureau C; Faller P; La Penna G
    J Phys Chem B; 2010 Nov; 114(46):15119-33. PubMed ID: 21038888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transition Metal Ion Interactions with Disordered Amyloid-β Peptides in the Pathogenesis of Alzheimer's Disease: Insights from Computational Chemistry Studies.
    Strodel B; Coskuner-Weber O
    J Chem Inf Model; 2019 May; 59(5):1782-1805. PubMed ID: 30933519
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histidine-rich branched peptides as Cu(II) and Zn(II) chelators with potential therapeutic application in Alzheimer's disease.
    Lakatos A; Gyurcsik B; Nagy NV; Csendes Z; Wéber E; Fülöp L; Kiss T
    Dalton Trans; 2012 Feb; 41(6):1713-26. PubMed ID: 22159144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Histidine availability is decisive in ROS-mediated cytotoxicity of copper complexes of Aβ1-16 peptide.
    Ginotra YP; Ramteke SN; Walke GR; Rapole S; Kulkarni PP
    Free Radic Res; 2016; 50(4):405-13. PubMed ID: 26690929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cu(II)-Zn(II) Cross-Modulation in Amyloid-Beta Peptide Binding: An X-ray Absorption Spectroscopy Study.
    De Santis E; Minicozzi V; Proux O; Rossi G; Silva KI; Lawless MJ; Stellato F; Saxena S; Morante S
    J Phys Chem B; 2015 Dec; 119(52):15813-20. PubMed ID: 26646533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Triggers for β-sheet formation at the hydrophobic-hydrophilic interface: high concentration, in-plane orientational order, and metal ion complexation.
    Hoernke M; Falenski JA; Schwieger C; Koksch B; Brezesinski G
    Langmuir; 2011 Dec; 27(23):14218-31. PubMed ID: 22011020
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of copper binding to the peptide amyloid-beta(1-16) associated with Alzheimer's disease.
    Ma QF; Hu J; Wu WH; Liu HD; Du JT; Fu Y; Wu YW; Lei P; Zhao YF; Li YM
    Biopolymers; 2006 Sep; 83(1):20-31. PubMed ID: 16615111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histidine-Rich Oligopeptides To Lessen Copper-Mediated Amyloid-β Toxicity.
    Caballero AB; Terol-Ordaz L; Espargaró A; Vázquez G; Nicolás E; Sabaté R; Gamez P
    Chemistry; 2016 May; 22(21):7268-80. PubMed ID: 27071336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulating amyloid self-assembly and fibril morphology with Zn(II).
    Dong J; Shokes JE; Scott RA; Lynn DG
    J Am Chem Soc; 2006 Mar; 128(11):3540-2. PubMed ID: 16536526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.