BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 27616569)

  • 1. Transition states and cell fate decisions in epigenetic landscapes.
    Moris N; Pina C; Arias AM
    Nat Rev Genet; 2016 Nov; 17(11):693-703. PubMed ID: 27616569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deterministic map of Waddington's epigenetic landscape for cell fate specification.
    Bhattacharya S; Zhang Q; Andersen ME
    BMC Syst Biol; 2011 May; 5():85. PubMed ID: 21619617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo method for in silico modeling and visualization of Waddington's epigenetic landscape with intermediate details.
    Zhang X; Chong KH; Zhu L; Zheng J
    Biosystems; 2020 Dec; 198():104275. PubMed ID: 33080349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic identification of cell-fate regulatory programs using a single-cell atlas of mouse development.
    Fei L; Chen H; Ma L; E W; Wang R; Fang X; Zhou Z; Sun H; Wang J; Jiang M; Wang X; Yu C; Mei Y; Jia D; Zhang T; Han X; Guo G
    Nat Genet; 2022 Jul; 54(7):1051-1061. PubMed ID: 35817981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bistability, bifurcations, and Waddington's epigenetic landscape.
    Ferrell JE
    Curr Biol; 2012 Jun; 22(11):R458-66. PubMed ID: 22677291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies.
    Ladewig J; Koch P; Brüstle O
    Nat Rev Mol Cell Biol; 2013 Apr; 14(4):225-36. PubMed ID: 23486282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies.
    Ladewig J; Koch P; Brüstle O
    Nat Rev Mol Cell Biol; 2013 Apr; 14(4):225-36. PubMed ID: 23847783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NetLand: quantitative modeling and visualization of Waddington's epigenetic landscape using probabilistic potential.
    Guo J; Lin F; Zhang X; Tanavde V; Zheng J
    Bioinformatics; 2017 May; 33(10):1583-1585. PubMed ID: 28108450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics.
    Zhou P; Wang S; Li T; Nie Q
    Nat Commun; 2021 Sep; 12(1):5609. PubMed ID: 34556644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition state characteristics during cell differentiation.
    Brackston RD; Lakatos E; Stumpf MPH
    PLoS Comput Biol; 2018 Sep; 14(9):e1006405. PubMed ID: 30235202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal.
    Hemberger M; Dean W; Reik W
    Nat Rev Mol Cell Biol; 2009 Aug; 10(8):526-37. PubMed ID: 19603040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A geometrical perspective on development.
    Raju A; Siggia ED
    Dev Growth Differ; 2023 Jun; 65(5):245-254. PubMed ID: 37190845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity in the Adult: How Should the Waddington Diagram Be Applied to Regenerating Tissues?
    Rajagopal J; Stanger BZ
    Dev Cell; 2016 Jan; 36(2):133-7. PubMed ID: 26812013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of oligodendrocyte identity.
    Liu J; Casaccia P
    Trends Neurosci; 2010 Apr; 33(4):193-201. PubMed ID: 20227775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branching and oscillations in the epigenetic landscape of cell-fate determination.
    Rabajante JF; Babierra AL
    Prog Biophys Mol Biol; 2015 Mar; 117(2-3):240-249. PubMed ID: 25641423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From understanding the development landscape of the canonical fate-switch pair to constructing a dynamic landscape for two-step neural differentiation.
    Qiu X; Ding S; Shi T
    PLoS One; 2012 Dec; 7(12):e49271. PubMed ID: 23300518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular reprogramming--lowering gravity on Waddington's epigenetic landscape.
    Takahashi K
    J Cell Sci; 2012 Jun; 125(Pt 11):2553-60. PubMed ID: 22736045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The geometry of cell fate.
    MacArthur BD
    Cell Syst; 2022 Jan; 13(1):1-3. PubMed ID: 35051370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The epigenetic landscape in the course of time: Conrad Hal Waddington's methodological impact on the life sciences.
    Baedke J
    Stud Hist Philos Biol Biomed Sci; 2013 Dec; 44(4 Pt B):756-73. PubMed ID: 23932231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and epigenetic regulators of pluripotency.
    Surani MA; Hayashi K; Hajkova P
    Cell; 2007 Feb; 128(4):747-62. PubMed ID: 17320511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.