These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27616876)

  • 1. Differentially Private Frequent Subgraph Mining.
    Xu S; Su S; Xiong L; Cheng X; Xiao K
    Proc Int Conf Data Eng; 2016 May; 2016():229-240. PubMed ID: 27616876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Two-Phase Algorithm for Differentially Private Frequent Subgraph Mining.
    Cheng X; Su S; Xu S; Xiong L; Xiao K; Zhao M
    IEEE Trans Knowl Data Eng; 2018 Aug; 30(8):1411-1425. PubMed ID: 33223776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentially Private Frequent Sequence Mining via Sampling-based Candidate Pruning.
    Xu S; Su S; Cheng X; Li Z; Xiong L
    Proc Int Conf Data Eng; 2015 Apr; 2015():1035-1046. PubMed ID: 26973430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentially Private Frequent Sequence Mining.
    Xu S; Su S; Cheng X; Xiao K; Xiong L
    IEEE Trans Knowl Data Eng; 2016 Nov; 28(11):2910-2926. PubMed ID: 37274928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RASMA: a reverse search algorithm for mining maximal frequent subgraphs.
    Salem S; Alokshiya M; Hasan MA
    BioData Min; 2021 Mar; 14(1):19. PubMed ID: 33726790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction.
    Liang Zhao ; Hoi SC; Li Z; Wong L; Nguyen H; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):7-16. PubMed ID: 26355502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Privately vertically mining of sequential patterns based on differential privacy with high efficiency and utility.
    Liang W; Zhang W; Liang S; Yuan C
    Sci Rep; 2023 Oct; 13(1):17866. PubMed ID: 37857630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasping frequent subgraph mining for bioinformatics applications.
    Mrzic A; Meysman P; Bittremieux W; Moris P; Cule B; Goethals B; Laukens K
    BioData Min; 2018; 11():20. PubMed ID: 30202444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.
    He J; Wang C; Qiu K; Zhong W
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S6. PubMed ID: 25350277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate classification of protein structural families using coherent subgraph analysis.
    Huan J; Wang W; Washington A; Prins J; Shah R; Tropsha A
    Pac Symp Biocomput; 2004; ():411-22. PubMed ID: 14992521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discriminative Feature Selection for Uncertain Graph Classification.
    Kong X; Yu PS; Wang X; Ragin AB
    Proc SIAM Int Conf Data Min; 2013; 2013():82-93. PubMed ID: 25949925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining subgraph coverage patterns from graph transactions.
    Reddy AS; Reddy PK; Mondal A; Priyakumar UD
    Int J Data Sci Anal; 2022; 13(2):105-121. PubMed ID: 34873579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A linear delay algorithm for enumerating all connected induced subgraphs.
    Alokshiya M; Salem S; Abed F
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):319. PubMed ID: 31216984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining the Enriched Subgraphs for Specific Vertices in a Biological Graph.
    Meysman P; Saeys Y; Sabaghian E; Bittremieux W; Van de Peer Y; Goethals B; Laukens K
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1496-1507. PubMed ID: 27295680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X; Zhou G; Shang J; Wang J; Peng J; Han J
    J Comput Biol; 2017 Sep; 24(9):923-941. PubMed ID: 28570104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Functional Motifs from the Interface Region of Oligomeric Proteins Using Frequent Subgraph Mining.
    Saha TK; Katebi A; Dhifli W; Al Hasan M
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1537-1549. PubMed ID: 28961123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.
    Bhowmick S; Chen TY; Halappanavar M
    J Parallel Distrib Comput; 2015 Feb; 76():132-144. PubMed ID: 25767331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dense Subgraph Partition of Positive Hypergraphs.
    Liu H; Latecki LJ; Yan S
    IEEE Trans Pattern Anal Mach Intell; 2015 Mar; 37(3):541-54. PubMed ID: 26353260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depression Classification Using Frequent Subgraph Mining Based on Pattern Growth of Frequent Edge in Functional Magnetic Resonance Imaging Uncertain Network.
    Li Y; Zhou Z; Li Q; Li T; Julian IN; Guo H; Chen J
    Front Neurosci; 2022; 16():889105. PubMed ID: 35578623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cmFSM: a scalable CPU-MIC coordinated drug-finding tool by frequent subgraph mining.
    Yang S; Guo R; Liu R; Liao X; Zou Q; Shi B; Peng S
    BMC Bioinformatics; 2018 May; 19(Suppl 4):98. PubMed ID: 29745832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.