These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Blockade of ventral midbrain NMDA receptors enhances brain stimulation reward: a preferential role for GluN2A subunits. Bergeron S; Rompré PP Eur Neuropsychopharmacol; 2013 Nov; 23(11):1623-35. PubMed ID: 23352316 [TBL] [Abstract][Full Text] [Related]
3. Reduction in Ventral Midbrain NMDA Receptors Reveals Two Opposite Modulatory Roles for Glutamate on Reward. Hernandez G; Khodami-Pour A; Lévesque D; Rompré PP Neuropsychopharmacology; 2015 Jun; 40(7):1682-91. PubMed ID: 25578795 [TBL] [Abstract][Full Text] [Related]
4. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area. Ducrot C; Fortier E; Bouchard C; Rompré PP Front Syst Neurosci; 2013; 7():57. PubMed ID: 24106463 [TBL] [Abstract][Full Text] [Related]
5. Facilitation of brain stimulation reward by MK-801 (dizocilpine) may be independent of D2-like dopamine receptor stimulation in rats. Clements RL; Greenshaw AJ Psychopharmacology (Berl); 2005 Oct; 182(1):65-74. PubMed ID: 16133130 [TBL] [Abstract][Full Text] [Related]
6. Modulation of brain stimulation reward and locomotor activity by ionotropic glutamate receptors of the tail of the ventral tegmental area. Fakhoury M; Hernandez G; Lévesque D; Rompré PP Behav Brain Res; 2020 Sep; 393():112785. PubMed ID: 32593543 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous AMPA/kainate receptor blockade and dopamine D(2/3) receptor stimulation in the nucleus accumbens decreases brain stimulation reward in rats. Choi KH; Clements RL; Greenshaw AJ Behav Brain Res; 2005 Mar; 158(1):79-88. PubMed ID: 15680196 [TBL] [Abstract][Full Text] [Related]
8. Deep brain stimulation of the medial forebrain bundle elevates striatal dopamine concentration without affecting spontaneous or reward-induced phasic release. Klanker M; Feenstra M; Willuhn I; Denys D Neuroscience; 2017 Nov; 364():82-92. PubMed ID: 28918253 [TBL] [Abstract][Full Text] [Related]
9. Combined Infusion and Stimulation with Fast-Scan Cyclic Voltammetry (CIS-FSCV) to Assess Ventral Tegmental Area Receptor Regulation of Phasic Dopamine. Wickham RJ; Lehr M; Mitchell L; Addy NA J Vis Exp; 2020 Apr; (158):. PubMed ID: 32420985 [TBL] [Abstract][Full Text] [Related]
10. Dorsal raphe stimulation relays a reward signal to the ventral tegmental area via GluN2C NMDA receptors. Hernandez G; Kouwenhoven WM; Poirier E; Lebied K; Lévesque D; Rompré PP PLoS One; 2023; 18(11):e0293564. PubMed ID: 37930965 [TBL] [Abstract][Full Text] [Related]
11. Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamine D1 receptors. Taepavarapruk P; Floresco SB; Phillips AG Psychopharmacology (Berl); 2000 Aug; 151(2-3):242-51. PubMed ID: 10972471 [TBL] [Abstract][Full Text] [Related]
12. Dynamic changes in dopamine tone during self-stimulation of the ventral tegmental area in rats. Hernández G; Shizgal P Behav Brain Res; 2009 Mar; 198(1):91-7. PubMed ID: 18996152 [TBL] [Abstract][Full Text] [Related]
13. NMDA Receptor-Dependent Cholinergic Modulation of Mesolimbic Dopamine Cell Bodies: Neurochemical and Behavioral Studies. Spanos M; Xie X; Gras-Najjar J; White SC; Sombers LA ACS Chem Neurosci; 2019 Mar; 10(3):1497-1505. PubMed ID: 30412381 [TBL] [Abstract][Full Text] [Related]
14. Electrophysiological evidence that a subset of midbrain dopamine neurons integrate the reward signal induced by electrical stimulation of the posterior mesencephalon. Moisan J; Rompré PP Brain Res; 1998 Mar; 786(1-2):143-52. PubMed ID: 9554987 [TBL] [Abstract][Full Text] [Related]
15. The effects of systemic and intracerebral injections of D1 and D2 agonists on brain stimulation reward. Ranaldi R; Beninger RJ Brain Res; 1994 Jul; 651(1-2):283-92. PubMed ID: 7922577 [TBL] [Abstract][Full Text] [Related]
16. Involvement of the ventral tegmental area opiate receptors in self-stimulation elicited from the ventral pallidum. Panagis G; Kastellakis A; Spyraki C Psychopharmacology (Berl); 1998 Oct; 139(3):222-9. PubMed ID: 9784077 [TBL] [Abstract][Full Text] [Related]
17. Ventral tegmental ionotropic glutamate receptor stimulation of nucleus accumbens tonic dopamine efflux blunts hindbrain-evoked phasic neurotransmission: implications for dopamine dysregulation disorders. Tye SJ; Miller AD; Blaha CD Neuroscience; 2013 Nov; 252():337-45. PubMed ID: 23962648 [TBL] [Abstract][Full Text] [Related]
18. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Zweifel LS; Parker JG; Lobb CJ; Rainwater A; Wall VZ; Fadok JP; Darvas M; Kim MJ; Mizumori SJ; Paladini CA; Phillips PE; Palmiter RD Proc Natl Acad Sci U S A; 2009 May; 106(18):7281-8. PubMed ID: 19342487 [TBL] [Abstract][Full Text] [Related]
19. Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. Howland JG; Taepavarapruk P; Phillips AG J Neurosci; 2002 Feb; 22(3):1137-45. PubMed ID: 11826142 [TBL] [Abstract][Full Text] [Related]
20. Effect of traumatic brain injury on nicotine-induced modulation of dopamine release in the striatum and nucleus accumbens shell. Chen YH; Kuo TT; Yi-Kung Huang E; Chou YC; Chiang YH; Hoffer BJ; Miller J Oncotarget; 2018 Feb; 9(11):10016-10028. PubMed ID: 29515787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]