These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27617369)

  • 1. Nitrogen regulates CRY1 phosphorylation and circadian clock input pathways.
    Zhou YH; Zhang ZW; Zheng C; Yuan S; He Y
    Plant Signal Behav; 2016 Sep; 11(9):e1219830. PubMed ID: 27617369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering.
    Yuan S; Zhang ZW; Zheng C; Zhao ZY; Wang Y; Feng LY; Niu G; Wang CQ; Wang JH; Feng H; Xu F; Bao F; Hu Y; Cao Y; Ma L; Wang H; Kong DD; Xiao W; Lin HH; He Y
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7661-6. PubMed ID: 27325772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPK at the crossroads of circadian clocks and metabolism.
    Jordan SD; Lamia KA
    Mol Cell Endocrinol; 2013 Feb; 366(2):163-9. PubMed ID: 22750052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation.
    Lamia KA; Sachdeva UM; DiTacchio L; Williams EC; Alvarez JG; Egan DF; Vasquez DS; Juguilon H; Panda S; Shaw RJ; Thompson CB; Evans RM
    Science; 2009 Oct; 326(5951):437-40. PubMed ID: 19833968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length.
    Gao P; Yoo SH; Lee KJ; Rosensweig C; Takahashi JS; Chen BP; Green CB
    J Biol Chem; 2013 Dec; 288(49):35277-86. PubMed ID: 24158435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.
    Huang Y; Zhu Z; Xie M; Xue J
    Nutr Res; 2015 Sep; 35(9):792-9. PubMed ID: 26239949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1.
    Ode KL; Ukai H; Susaki EA; Narumi R; Matsumoto K; Hara J; Koide N; Abe T; Kanemaki MT; Kiyonari H; Ueda HR
    Mol Cell; 2017 Jan; 65(1):176-190. PubMed ID: 28017587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen and nitric oxide regulate Arabidopsis flowering differently.
    Zhang ZW; Fu YF; Zhou YH; Wang CQ; Lan T; Chen GD; Zeng J; Chen YE; Yuan M; Yuan S; Hu JY
    Plant Sci; 2019 Jul; 284():177-184. PubMed ID: 31084870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals.
    Tong X; Buelow K; Guha A; Rausch R; Yin L
    J Biol Chem; 2012 Jul; 287(30):25280-91. PubMed ID: 22669941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperactivity of the
    Orth C; Niemann N; Hennig L; Essen LO; Batschauer A
    J Biol Chem; 2017 Aug; 292(31):12906-12920. PubMed ID: 28634231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian clock-deficient mice as a tool for exploring disease etiology.
    Doi M
    Biol Pharm Bull; 2012; 35(9):1385-91. PubMed ID: 22975484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ratio of intracellular CRY proteins determines the clock period length.
    Li Y; Xiong W; Zhang EE
    Biochem Biophys Res Commun; 2016 Apr; 472(3):531-8. PubMed ID: 26966073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization.
    Papp SJ; Huber AL; Jordan SD; Kriebs A; Nguyen M; Moresco JJ; Yates JR; Lamia KA
    Elife; 2015 Mar; 4():. PubMed ID: 25756610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of CRY1 Serine 71 Alters Voluntary Activity but Not Circadian Rhythms In Vivo.
    Vaughan M; Jordan SD; Duglan D; Chan AB; Afetian M; Lamia KA
    J Biol Rhythms; 2019 Aug; 34(4):401-409. PubMed ID: 31258021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JMJD5 links CRY1 function and proteasomal degradation.
    Saran AR; Kalinowska D; Oh S; Janknecht R; DiTacchio L
    PLoS Biol; 2018 Nov; 16(11):e2006145. PubMed ID: 30500822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PER2 Differentially Regulates Clock Phosphorylation versus Transcription by Reciprocal Switching of CK1ε Activity.
    Qin X; Mori T; Zhang Y; Johnson CH
    J Biol Rhythms; 2015 Jun; 30(3):206-16. PubMed ID: 25994100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new role for AMP-activated protein kinase in the circadian regulation of L-type voltage-gated calcium channels in late-stage embryonic retinal photoreceptors.
    Huang CC; Shi L; Lin CH; Kim AJ; Ko ML; Ko GY
    J Neurochem; 2015 Nov; 135(4):727-41. PubMed ID: 26337027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical cholangiocarcinogenesis control by cryptochrome clock genes.
    Mteyrek A; Filipski E; Guettier C; Oklejewicz M; van der Horst GT; Okyar A; Lévi F
    Int J Cancer; 2017 Jun; 140(11):2473-2483. PubMed ID: 28224616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    Park MJ; Kwon YJ; Gil KE; Park CM
    BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocycle and signaling mechanisms of plant cryptochromes.
    Ahmad M
    Curr Opin Plant Biol; 2016 Oct; 33():108-115. PubMed ID: 27423124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.