These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27617514)

  • 1. Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices.
    Künzle M; Eckert T; Beck T
    J Am Chem Soc; 2016 Oct; 138(39):12731-12734. PubMed ID: 27617514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.
    Lach M; Künzle M; Beck T
    Chemistry; 2017 Dec; 23(69):17482-17486. PubMed ID: 29076566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of Differently Sized Supercharged Protein Nanocages into Superlattices for Construction of Binary Nanoparticle-Protein Materials.
    Rütten M; Lang L; Wagler H; Lach M; Mucke N; Laugks U; Seuring C; Keller TF; Stierle A; Ginn HM; Beck T
    ACS Nano; 2024 Sep; 18(36):25325-25336. PubMed ID: 39189351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of Gold Nanoparticles into Redesigned Ferritin Nanocages for the Assembly of Binary Superlattices Composed of Fluorophores and Gold Nanoparticles.
    Lach M; Strelow C; Meyer A; Mews A; Beck T
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10656-10668. PubMed ID: 35166537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural diversity in binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Kotov NA; O'Brien S; Murray CB
    Nature; 2006 Jan; 439(7072):55-9. PubMed ID: 16397494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Cage Directed Assembly of Binary Nanoparticle Superlattices.
    Zhou Y; Shaukat A; Seitsonen J; Rigoni C; Timonen JVI; Kostiainen MA
    Adv Sci (Weinh); 2024 Dec; 11(45):e2408416. PubMed ID: 39401426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic assembly of binary nanoparticle superlattices using protein cages.
    Kostiainen MA; Hiekkataipale P; Laiho A; Lemieux V; Seitsonen J; Ruokolainen J; Ceci P
    Nat Nanotechnol; 2013 Jan; 8(1):52-6. PubMed ID: 23241655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices.
    Udayabhaskararao T; Altantzis T; Houben L; Coronado-Puchau M; Langer J; Popovitz-Biro R; Liz-Marzán LM; Vuković L; Král P; Bals S; Klajn R
    Science; 2017 Oct; 358(6362):514-518. PubMed ID: 29074773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topotactic interconversion of nanoparticle superlattices.
    Macfarlane RJ; Jones MR; Lee B; Auyeung E; Mirkin CA
    Science; 2013 Sep; 341(6151):1222-5. PubMed ID: 23970559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA origami directed 3D nanoparticle superlattice via electrostatic assembly.
    Julin S; Korpi A; Nonappa ; Shen B; Liljeström V; Ikkala O; Keller A; Linko V; Kostiainen MA
    Nanoscale; 2019 Mar; 11(10):4546-4551. PubMed ID: 30806410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ordered Surface Structuring of Spherical Colloids with Binary Nanoparticle Superlattices.
    Meder F; Thomas SS; Bollhorst T; Dawson KA
    Nano Lett; 2018 Apr; 18(4):2511-2518. PubMed ID: 29579388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Occlusion of Nanoparticles within Inorganic Single Crystals.
    Ning Y; Armes SP
    Acc Chem Res; 2020 Jun; 53(6):1176-1186. PubMed ID: 32421304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
    Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM
    Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystalline Biohybrid Materials Based on Protein Cages.
    Böhler H; Rütten M; Lang L; Beck T
    Methods Mol Biol; 2023; 2671():361-386. PubMed ID: 37308656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable crystalline assemblies using surface-engineered protein cages.
    Lach M; Rütten M; Beck T
    Protein Sci; 2024 Sep; 33(9):e5153. PubMed ID: 39167037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic Self-Assembly of Soft Matter Nanoparticle Cocrystals with Tunable Lattice Parameters.
    Liljeström V; Seitsonen J; Kostiainen MA
    ACS Nano; 2015 Nov; 9(11):11278-85. PubMed ID: 26497975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of highly ordered rectangular nanoparticle superlattices by the cooperative self-assembly of nanoparticles and fatty molecules.
    Harada T; Hatton TA
    Langmuir; 2009 Jun; 25(11):6407-12. PubMed ID: 19466789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Softness on the Stability of Binary Colloidal Crystals.
    LaCour RA; Adorf CS; Dshemuchadse J; Glotzer SC
    ACS Nano; 2019 Dec; 13(12):13829-13842. PubMed ID: 31692332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-free ordered mesoporous silicas by binary nanoparticle assembly.
    Kung SC; Chang CC; Fan W; Snyder MA
    Langmuir; 2014 Oct; 30(39):11802-11. PubMed ID: 25203868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.