BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27617782)

  • 1. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.
    Önlü S; Saçan MT
    Environ Toxicol Chem; 2017 Apr; 36(4):1012-1019. PubMed ID: 27617782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the aquatic toxicity of substituted phenols to Chlorella vulgaris: QSTR with an extended novel data set and interspecies models.
    Tugcu G; Ertürk MD; Saçan MT
    J Hazard Mater; 2017 Oct; 339():122-130. PubMed ID: 28641232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in silico approach to cytotoxicity of pharmaceuticals and personal care products on the rainbow trout liver cell line RTL-W1.
    Önlü S; Saçan MT
    Environ Toxicol Chem; 2017 May; 36(5):1162-1169. PubMed ID: 27779323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing predictive models for toxicity of organic chemicals to green algae based on mode of action.
    Bakire S; Yang X; Ma G; Wei X; Yu H; Chen J; Lin H
    Chemosphere; 2018 Jan; 190():463-470. PubMed ID: 29028601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of algal interspecies correlation estimation models for chemical hazard assessment.
    Brill JL; Belanger SE; Chaney JG; Dyer SD; Raimondo S; Barron MG; Pittinger CA
    Environ Toxicol Chem; 2016 Sep; 35(9):2368-78. PubMed ID: 26792236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals.
    Sangion A; Gramatica P
    Environ Res; 2016 May; 147():297-306. PubMed ID: 26921826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata.
    Aruoja V; Moosus M; Kahru A; Sihtmäe M; Maran U
    Chemosphere; 2014 Feb; 96():23-32. PubMed ID: 23895738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interspecies quantitative structure-toxicity-toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus.
    Das RN; Roy K; Popelier PL
    Ecotoxicol Environ Saf; 2015 Dec; 122():497-520. PubMed ID: 26414597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties.
    Furuhama A; Hasunuma K; Hayashi TI; Tatarazako N
    SAR QSAR Environ Res; 2016 May; 27(5):343-62. PubMed ID: 27171903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive modeling of chemical toxicity towards Pseudokirchneriella subcapitata using regression and classification based approaches.
    Pramanik S; Roy K
    Ecotoxicol Environ Saf; 2014 Mar; 101():184-90. PubMed ID: 24507144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessments of Algal Toxicity and PBT Behaviour of Pesticides with No Eco-toxicological Data: Predictive Ability of QSA/(T)R Models.
    Gökçe S; Saçan MT
    Mol Inform; 2019 Aug; 38(8-9):e1800137. PubMed ID: 30969472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of contaminants of emerging concern to Dugesia japonica: QSTR modeling and toxicity relationship with Daphnia magna.
    Önlü S; Saçan MT
    J Hazard Mater; 2018 Jun; 351():20-28. PubMed ID: 29506002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment and modeling of the novel toxicity data set of phenols to Chlorella vulgaris.
    Ertürk MD; Saçan MT
    Ecotoxicol Environ Saf; 2013 Apr; 90():61-8. PubMed ID: 23332417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach.
    Abbasitabar F; Zare-Shahabadi V
    Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.
    Kleandrova VV; Luan F; Speck-Planche A; Cordeiro MN
    Mini Rev Med Chem; 2015; 15(8):677-86. PubMed ID: 25694074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multipronged QSAR approach to predict algal low-toxic-effect concentrations of substituted phenols and anilines.
    Tugcu G; Saçan MT
    J Hazard Mater; 2018 Feb; 344():893-901. PubMed ID: 29190587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information.
    Shah I; Liu J; Judson RS; Thomas RS; Patlewicz G
    Regul Toxicol Pharmacol; 2016 Aug; 79():12-24. PubMed ID: 27174420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative performance of descriptors in a multiple linear and Kriging models: a case study on the acute toxicity of organic chemicals to algae.
    Tugcu G; Yilmaz HB; Saçan MT
    Environ Sci Pollut Res Int; 2014 Oct; 21(20):11924-32. PubMed ID: 24946708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.