These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
818 related articles for article (PubMed ID: 27617796)
81. Enhanced magnetic properties and tunable Dirac point of graphene/Mn-doped monolayer MoS Tan Q; Wang Q; Liu Y; Liu C; Feng X; Yu D J Phys Condens Matter; 2018 Aug; 30(30):305304. PubMed ID: 29900880 [TBL] [Abstract][Full Text] [Related]
82. The magnetic proximity effect and electrical field tunable valley degeneracy in MoS Liang X; Deng L; Huang F; Tang T; Wang C; Zhu Y; Qin J; Zhang Y; Peng B; Bi L Nanoscale; 2017 Jul; 9(27):9502-9509. PubMed ID: 28660948 [TBL] [Abstract][Full Text] [Related]
83. Synthesis, Magnetic Properties, and Electronic Structure of Magnetic Topological Insulator MnBi Zhu T; Bishop AJ; Zhou T; Zhu M; O'Hara DJ; Baker AA; Cheng S; Walko RC; Repicky JJ; Liu T; Gupta JA; Jozwiak CM; Rotenberg E; Hwang J; Žutić I; Kawakami RK Nano Lett; 2021 Jun; 21(12):5083-5090. PubMed ID: 34097421 [TBL] [Abstract][Full Text] [Related]
84. Nanometric Moiré Stripes on the Surface of Bi Salvato M; Crescenzi M; Scagliotti M; Castrucci P; Boninelli S; Caruso GM; Liu Y; Mikkelsen A; Timm R; Nahas S; Black-Schaffer A; Kunakova G; Andzane J; Erts D; Bauch T; Lombardi F ACS Nano; 2022 Sep; 16(9):13860-13868. PubMed ID: 36098662 [TBL] [Abstract][Full Text] [Related]
85. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Hu ZX; Kong X; Qiao J; Normand B; Ji W Nanoscale; 2016 Feb; 8(5):2740-50. PubMed ID: 26763557 [TBL] [Abstract][Full Text] [Related]
86. Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions. Zhang K; Hu S; Zhang Y; Zhang T; Zhou X; Sun Y; Li TX; Fan HJ; Shen G; Chen X; Dai N ACS Nano; 2015 Mar; 9(3):2704-10. PubMed ID: 25716291 [TBL] [Abstract][Full Text] [Related]
87. Tunneling Spin Valves Based on Fe Wang Z; Sapkota D; Taniguchi T; Watanabe K; Mandrus D; Morpurgo AF Nano Lett; 2018 Jul; 18(7):4303-4308. PubMed ID: 29870263 [TBL] [Abstract][Full Text] [Related]
88. A first-principles study of two-dimensional NbSe Yeoh KH; Chew KH; Yoon TL; Chang YHR; Ong DS Phys Chem Chem Phys; 2021 Nov; 23(42):24222-24232. PubMed ID: 34668497 [TBL] [Abstract][Full Text] [Related]
89. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. Azizi A; Eichfeld S; Geschwind G; Zhang K; Jiang B; Mukherjee D; Hossain L; Piasecki AF; Kabius B; Robinson JA; Alem N ACS Nano; 2015 May; 9(5):4882-90. PubMed ID: 25885122 [TBL] [Abstract][Full Text] [Related]
90. An ab initio investigation of Bi de Oliveira IS; Scopel WL; Miwa RH J Phys Condens Matter; 2017 Feb; 29(4):045302. PubMed ID: 27882899 [TBL] [Abstract][Full Text] [Related]
91. Coincident-site lattice matching during van der Waals epitaxy. Boschker JE; Galves LA; Flissikowski T; Lopes JM; Riechert H; Calarco R Sci Rep; 2015 Dec; 5():18079. PubMed ID: 26658715 [TBL] [Abstract][Full Text] [Related]
92. Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Wu J; Liu F; Sasase M; Ienaga K; Obata Y; Yukawa R; Horiba K; Kumigashira H; Okuma S; Inoshita T; Hosono H Sci Adv; 2019 Nov; 5(11):eaax9989. PubMed ID: 31763457 [TBL] [Abstract][Full Text] [Related]
93. Magnetizing topological surface states of Bi Hou Y; Kim J; Wu R Sci Adv; 2019 May; 5(5):eaaw1874. PubMed ID: 31172028 [TBL] [Abstract][Full Text] [Related]
94. Proximity Spin-Orbit Torque on a Two-Dimensional Magnet within van der Waals Heterostructure: Current-Driven Antiferromagnet-to-Ferromagnet Reversible Nonequilibrium Phase Transition in Bilayer CrI Dolui K; Petrović MD; Zollner K; Plecháč P; Fabian J; Nikolić BK Nano Lett; 2020 Apr; 20(4):2288-2295. PubMed ID: 32130017 [TBL] [Abstract][Full Text] [Related]
95. Topological superconductivity in a van der Waals heterostructure. Kezilebieke S; Huda MN; Vaňo V; Aapro M; Ganguli SC; Silveira OJ; Głodzik S; Foster AS; Ojanen T; Liljeroth P Nature; 2020 Dec; 588(7838):424-428. PubMed ID: 33328663 [TBL] [Abstract][Full Text] [Related]
97. In-plane anisotropy of graphene by strong interlayer interactions with van der Waals epitaxially grown MoO Kim H; Kim JH; Kim J; Park J; Park K; Baek JH; Shin JC; Lee H; Son J; Ryu S; Son YW; Cheong H; Lee GH Sci Adv; 2023 Jun; 9(23):eadg6696. PubMed ID: 37285425 [TBL] [Abstract][Full Text] [Related]
98. Unravelling Photoinduced Interlayer Spin Transfer Dynamics in Two-Dimensional Nonmagnetic-Ferromagnetic van der Waals Heterostructures. He J; Li S; Bandyopadhyay A; Frauenheim T Nano Lett; 2021 Apr; 21(7):3237-3244. PubMed ID: 33749285 [TBL] [Abstract][Full Text] [Related]
99. Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer. Boandoh S; Agyapong-Fordjour FO; Choi SH; Lee JS; Park JH; Ko H; Han G; Yun SJ; Park S; Kim YM; Yang W; Lee YH; Kim SM; Kim KK ACS Appl Mater Interfaces; 2019 Jan; 11(1):1579-1586. PubMed ID: 30525400 [TBL] [Abstract][Full Text] [Related]