These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27618109)

  • 1. Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study.
    Alonso F; Latorre MA; Göransson N; Zsigmond P; Wårdell K
    Brain Sci; 2016 Sep; 6(3):. PubMed ID: 27618109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. White matter tracing combined with electric field simulation - A patient-specific approach for deep brain stimulation.
    Nordin T; Zsigmond P; Pujol S; Westin CF; Wårdell K
    Neuroimage Clin; 2019; 24():102026. PubMed ID: 31795055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric Field Comparison between Microelectrode Recording and Deep Brain Stimulation Systems-A Simulation Study.
    Alonso F; Vogel D; Johansson J; Wårdell K; Hemm S
    Brain Sci; 2018 Feb; 8(2):. PubMed ID: 29415442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-Specific Simulations of Deep Brain Stimulation Electric Field with Aid of In-house Software ELMA.
    Johansson JD; Alonso F; Wardell K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5212-5216. PubMed ID: 31947033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient-Specific Electric Field Simulations and Acceleration Measurements for Objective Analysis of Intraoperative Stimulation Tests in the Thalamus.
    Hemm S; Pison D; Alonso F; Shah A; Coste J; Lemaire JJ; Wårdell K
    Front Hum Neurosci; 2016; 10():577. PubMed ID: 27932961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of electric field impact in deep brain stimulation from axon diameter distribution in the human brain.
    Johansson JD
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34619674
    [No Abstract]   [Full Text] [Related]  

  • 7. Patient-specific analysis of the volume of tissue activated during deep brain stimulation.
    Butson CR; Cooper SE; Henderson JM; McIntyre CC
    Neuroimage; 2007 Jan; 34(2):661-70. PubMed ID: 17113789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region.
    van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH
    J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel assistive method for rigidity evaluation during deep brain stimulation surgery using acceleration sensors.
    Shah A; Coste J; Lemaire JJ; Schkommodau E; Taub E; Guzman R; Derost P; Hemm S
    J Neurosurg; 2017 Sep; 127(3):602-612. PubMed ID: 27982769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical deep brain stimulation strategies for orientation-selective pathway activation.
    Slopsema JP; Peña E; Patriat R; Lehto LJ; Gröhn O; Mangia S; Harel N; Michaeli S; Johnson MD
    J Neural Eng; 2018 Oct; 15(5):056029. PubMed ID: 30095084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets.
    Teplitzky BA; Zitella LM; Xiao Y; Johnson MD
    Front Comput Neurosci; 2016; 10():58. PubMed ID: 27375470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic maps for deep brain stimulation - Impact of methodological differences.
    Nordin T; Vogel D; Österlund E; Johansson J; Blomstedt P; Fytagoridis A; Hemm S; Wårdell K
    Brain Stimul; 2022; 15(5):1139-1152. PubMed ID: 35987327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes.
    Anderson DN; Osting B; Vorwerk J; Dorval AD; Butson CR
    J Neural Eng; 2018 Apr; 15(2):026005. PubMed ID: 29235446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.
    Butson CR; McIntyre CC
    Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial steering of deep brain stimulation volumes using a novel lead design.
    Martens HCF; Toader E; Decré MMJ; Anderson DJ; Vetter R; Kipke DR; Baker KB; Johnson MD; Vitek JL
    Clin Neurophysiol; 2011 Mar; 122(3):558-566. PubMed ID: 20729143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between patient-specific deep brain stimulation simulations and commercial system SureTune3.
    Johansson JD; Zsigmond P
    Biomed Phys Eng Express; 2021 Jul; 7(5):. PubMed ID: 34161929
    [No Abstract]   [Full Text] [Related]  

  • 19. Probabilistic mapping of deep brain stimulation effects in essential tremor.
    Dembek TA; Barbe MT; Åström M; Hoevels M; Visser-Vandewalle V; Fink GR; Timmermann L
    Neuroimage Clin; 2017; 13():164-173. PubMed ID: 27981031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.