BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27618224)

  • 1. Angiogenic Rg
    Salarian M; Xu WZ; Bohay R; Lui EM; Charpentier PA
    Macromol Biosci; 2017 Feb; 17(2):. PubMed ID: 27618224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A poly(propylene fumarate)--calcium phosphate based angiogenic injectable bone cement for femoral head osteonecrosis.
    Chang CH; Liao TC; Hsu YM; Fang HW; Chen CC; Lin FH
    Biomaterials; 2010 May; 31(14):4048-55. PubMed ID: 20172606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds.
    Li J; Liu X; Park S; Miller AL; Terzic A; Lu L
    J Biomed Mater Res A; 2019 Mar; 107(3):631-642. PubMed ID: 30422387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue.
    Shahbazi S; Moztarzadeh F; Sadeghi GM; Jafari Y
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1201-9. PubMed ID: 27612818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials.
    Fisher JP; Dean D; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4333-43. PubMed ID: 12219823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst.
    Shung AK; Timmer MD; Jo S; Engel PS; Mikos AG
    J Biomater Sci Polym Ed; 2002; 13(1):95-108. PubMed ID: 12003078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes.
    Khaled SM; Charpentier PA; Rizkalla AS
    Acta Biomater; 2010 Aug; 6(8):3178-86. PubMed ID: 20170759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of partially saturated poly(propylene fumarate) for orthopaedic application.
    Peter SJ; Yaszemski MJ; Suggs LJ; Payne RG; Langer R; Hayes WC; Unroe MR; Alemany LB; Engel PS; Mikos AG
    J Biomater Sci Polym Ed; 1997; 8(11):893-904. PubMed ID: 9342654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of poly(propylene fumarate) by acylation of propylene glycol in the presence of a proton scavenger.
    Peter SJ; Suggs LJ; Yaszemski MJ; Engel PS; Mikos AG
    J Biomater Sci Polym Ed; 1999; 10(3):363-73. PubMed ID: 10189104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable bone cement compositions based on acrylate and epoxide terminated poly(propylene fumarate) oligomers and calcium salt compositions.
    Domb AJ; Manor N; Elmalak O
    Biomaterials; 1996 Feb; 17(4):411-7. PubMed ID: 8938235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of novel TiO
    Salarian M; Xu WZ; Biesinger MC; Charpentier PA
    J Mater Chem B; 2014 Aug; 2(32):5145-5156. PubMed ID: 32261656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement.
    Peter SJ; Kim P; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1999 Mar; 44(3):314-21. PubMed ID: 10397934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.
    Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH
    Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [FTIR study on the synthesis of poly(propylene fumarate) and its copolymer].
    Zhang N; Cai ZY; Chang JB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jan; 30(1):35-7. PubMed ID: 20302075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate.
    Timmer MD; Ambrose CG; Mikos AG
    Biomaterials; 2003 Feb; 24(4):571-7. PubMed ID: 12437951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable biomaterials for minimally invasive orthopedic treatments.
    Jayabalan M; Shalumon KT; Mitha MK
    J Mater Sci Mater Med; 2009 Jun; 20(6):1379-87. PubMed ID: 19160023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Progress in researches on the synthesis of poly (propylene fumarate) and its crosslinking characteristics].
    Zhao W; Yang D; Li Z; Xu T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):381-4. PubMed ID: 15884560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of black phosphorus nanosheets into poly(propylene fumarate) biodegradable bone cement to enhance bioactivity and osteogenesis.
    Chen J; Huang X; Wang J; Chen W; Teng Y; Yin D
    J Orthop Surg Res; 2024 Jan; 19(1):98. PubMed ID: 38291442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(propylene fumarate)/(calcium sulphate/beta-tricalcium phosphate) composites: preparation, characterization and in vitro degradation.
    Cai ZY; Yang DA; Zhang N; Ji CG; Zhu L; Zhang T
    Acta Biomater; 2009 Feb; 5(2):628-35. PubMed ID: 18951071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.