These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 27618288)
21. Optical coherence tomographic pattern may predict visual outcome after intravitreal triamcinolone for diabetic macular edema. Gibran SK; Khan K; Jungkim S; Cleary PE Ophthalmology; 2007 May; 114(5):890-4. PubMed ID: 17467527 [TBL] [Abstract][Full Text] [Related]
22. Relationship Between Dry Retinal Volume and Visual Acuity in Diabetic Macular Edema. Nittala MG; Velaga SB; Hu Z; Sadda SR Ophthalmic Surg Lasers Imaging Retina; 2018 Jul; 49(7):510-515. PubMed ID: 30021038 [TBL] [Abstract][Full Text] [Related]
23. Deep Capillary Macular Perfusion Indices Obtained with OCT Angiography Correlate with Degree of Nonproliferative Diabetic Retinopathy. Sambhav K; Abu-Amero KK; Chalam KV Eur J Ophthalmol; 2017 Nov; 27(6):716-729. PubMed ID: 28362051 [TBL] [Abstract][Full Text] [Related]
24. Parallelism for quantitative image analysis of photoreceptor-retinal pigment epithelium complex alterations in diabetic macular edema. Uji A; Murakami T; Unoki N; Ogino K; Horii T; Yoshitake S; Dodo Y; Yoshimura N Invest Ophthalmol Vis Sci; 2014 May; 55(5):3361-7. PubMed ID: 24812554 [TBL] [Abstract][Full Text] [Related]
25. CORRELATION OF OPTICAL COHERENCE TOMOGRAPHIC HYPERREFLECTIVE FOCI WITH VISUAL OUTCOMES IN DIFFERENT PATTERNS OF DIABETIC MACULAR EDEMA. Kang JW; Chung H; Chan Kim H Retina; 2016 Sep; 36(9):1630-9. PubMed ID: 26900741 [TBL] [Abstract][Full Text] [Related]
26. A new texture-based labeling framework for hyper-reflective foci identification in retinal optical coherence tomography images. Monemian M; Daneshmand PG; Rakhshani S; Rabbani H Sci Rep; 2024 Oct; 14(1):22933. PubMed ID: 39358477 [TBL] [Abstract][Full Text] [Related]
27. A deep learning approach to hard exudates detection and disorganization of retinal inner layers identification on OCT images. Toto L; Romano A; Pavan M; Degl'Innocenti D; Olivotto V; Formenti F; Viggiano P; Midena E; Mastropasqua R Sci Rep; 2024 Jul; 14(1):16652. PubMed ID: 39030181 [TBL] [Abstract][Full Text] [Related]
37. Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images. Hassan B; Raja G; Hassan T; Usman Akram M J Opt Soc Am A Opt Image Sci Vis; 2016 Apr; 33(4):455-63. PubMed ID: 27140751 [TBL] [Abstract][Full Text] [Related]
38. Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces. Syed AM; Hassan T; Akram MU; Naz S; Khalid S Comput Methods Programs Biomed; 2016 Dec; 137():1-10. PubMed ID: 28110716 [TBL] [Abstract][Full Text] [Related]
39. Automated layer segmentation of optical coherence tomography images. Lu S; Cheung CY; Liu J; Lim JH; Leung CK; Wong TY IEEE Trans Biomed Eng; 2010 Oct; 57(10):2605-8. PubMed ID: 20595078 [TBL] [Abstract][Full Text] [Related]
40. Precise higher-order reflectivity and morphology models for early diagnosis of diabetic retinopathy using OCT images. Sharafeldeen A; Elsharkawy M; Khalifa F; Soliman A; Ghazal M; AlHalabi M; Yaghi M; Alrahmawy M; Elmougy S; Sandhu HS; El-Baz A Sci Rep; 2021 Feb; 11(1):4730. PubMed ID: 33633139 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]