These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27618337)

  • 61. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor.
    Prabha S; Rao DN; Nagaraja V
    PLoS One; 2011 Apr; 6(4):e19131. PubMed ID: 21559463
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Calf thymus DNA helicase F, a replication protein A copurifying enzyme.
    Georgaki A; Tuteja N; Sturzenegger B; Hübscher U
    Nucleic Acids Res; 1994 Apr; 22(7):1128-34. PubMed ID: 8165124
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A skipping rope translocation mechanism in a widespread family of DNA repair helicases.
    Roske JJ; Liu S; Loll B; Neu U; Wahl MC
    Nucleic Acids Res; 2021 Jan; 49(1):504-518. PubMed ID: 33300032
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Investigation of bacterial nucleotide excision repair using single-molecule techniques.
    Van Houten B; Kad N
    DNA Repair (Amst); 2014 Aug; 20():41-48. PubMed ID: 24472181
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of Lhr-Core DNA helicase and manganese- dependent DNA nuclease components of a bacterial gene cluster encoding nucleic acid repair enzymes.
    Ejaz A; Shuman S
    J Biol Chem; 2018 Nov; 293(45):17491-17504. PubMed ID: 30224353
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action.
    Rossi F; Khanduja JS; Bortoluzzi A; Houghton J; Sander P; Güthlein C; Davis EO; Springer B; Böttger EC; Relini A; Penco A; Muniyappa K; Rizzi M
    Nucleic Acids Res; 2011 Sep; 39(16):7316-28. PubMed ID: 21622956
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Role of the nucleotide excision repair pathway proteins (UvrB and UvrD2) in recycling UdgB, a base excision repair enzyme in Mycobacterium smegmatis.
    Kapoor I; Shaw A; Naha A; Emam EAF; Varshney U
    DNA Repair (Amst); 2022 May; 113():103316. PubMed ID: 35306347
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis.
    Ansong C; Ortega C; Payne SH; Haft DH; Chauvignè-Hines LM; Lewis MP; Ollodart AR; Purvine SO; Shukla AK; Fortuin S; Smith RD; Adkins JN; Grundner C; Wright AT
    Chem Biol; 2013 Jan; 20(1):123-33. PubMed ID: 23352146
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Involvement of a cryptic ATPase activity of UvrB and its proteolysis product, UvrB* in DNA repair.
    Caron PR; Grossman L
    Nucleic Acids Res; 1988 Oct; 16(20):9651-62. PubMed ID: 16617484
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mechanism of DNA Lesion Homing and Recognition by the Uvr Nucleotide Excision Repair System.
    Lee SJ; Sung RJ; Verdine GL
    Research (Wash D C); 2019; 2019():5641746. PubMed ID: 31549070
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure and mechanism of helicases and nucleic acid translocases.
    Singleton MR; Dillingham MS; Wigley DB
    Annu Rev Biochem; 2007; 76():23-50. PubMed ID: 17506634
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Techniques and applications: The heterologous expression of Mycobacterium tuberculosis genes is an uphill road.
    Bellinzoni M; Riccardi G
    Trends Microbiol; 2003 Aug; 11(8):351-8. PubMed ID: 12915092
    [No Abstract]   [Full Text] [Related]  

  • 73. Sequencing-relative to hybridization-based transcriptomics approaches better define Mycobacterium tuberculosis stress-response regulons.
    Veatch AV; Niu T; Caskey J; McGillivray A; Gautam US; Subramanian R; Kousoulas KG; Mehra S; Kaushal D
    Tuberculosis (Edinb); 2016 Dec; 101S():S9-S17. PubMed ID: 27729257
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mycobacterium tuberculosis Rv2882c Protein Induces Activation of Macrophages through TLR4 and Exhibits Vaccine Potential.
    Choi HG; Choi S; Back YW; Park HS; Bae HS; Choi CH; Kim HJ
    PLoS One; 2016; 11(10):e0164458. PubMed ID: 27711141
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mgm101: A double-duty Rad52-like protein.
    Rendeková J; Ward TA; Šimoničová L; Thomas PH; Nosek J; Tomáška Ľ; McHugh PJ; Chovanec M
    Cell Cycle; 2016 Dec; 15(23):3169-3176. PubMed ID: 27636878
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis.
    Singh A
    Microbiology (Reading); 2017 Dec; 163(12):1740-1758. PubMed ID: 29171825
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Probing the Potential Role of Non-B DNA Structures at Yeast Meiosis-Specific DNA Double-Strand Breaks.
    Kshirsagar R; Khan K; Joshi MV; Hosur RV; Muniyappa K
    Biophys J; 2017 May; 112(10):2056-2074. PubMed ID: 28538144
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genetic and biochemical evidences reveal novel insights into the mechanism underlying
    Ghodke I; Muniyappa K
    J Biosci; 2016 Dec; 41(4):615-641. PubMed ID: 27966484
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structural and functional insights into the activation of the dual incision activity of UvrC, a key player in bacterial NER.
    Seck A; De Bonis S; Stelter M; Ökvist M; Senarisoy M; Hayek MR; Le Roy A; Martin L; Saint-Pierre C; Silveira CM; Gasparutto D; Todorovic S; Ravanat JL; Timmins J
    Nucleic Acids Res; 2023 Apr; 51(6):2931-2949. PubMed ID: 36869664
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Interrogating the substrate specificity landscape of UvrC reveals novel insights into its non-canonical function.
    Thakur M; Parulekar RS; Barale SS; Sonawane KD; Muniyappa K
    Biophys J; 2022 Aug; 121(16):3103-3125. PubMed ID: 35810330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.