These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 27618685)
1. Evolution of an atypical de-epoxidase for photoprotection in the green lineage. Li Z; Peers G; Dent RM; Bai Y; Yang SY; Apel W; Leonelli L; Niyogi KK Nat Plants; 2016 Sep; 2():16140. PubMed ID: 27618685 [TBL] [Abstract][Full Text] [Related]
2. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes. Biswal S; Gupta PSS; Panda SK; Bhat HR; Rana MK Photosynth Res; 2023 Jun; 156(3):337-354. PubMed ID: 36847893 [TBL] [Abstract][Full Text] [Related]
3. Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase. Simionato D; Basso S; Zaffagnini M; Lana T; Marzotto F; Trost P; Morosinotto T FEBS Lett; 2015 Apr; 589(8):919-23. PubMed ID: 25747136 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary divergence of photoprotection in the green algal lineage: a plant-like violaxanthin de-epoxidase enzyme activates the xanthophyll cycle in the green alga Chlorella vulgaris modulating photoprotection. Girolomoni L; Bellamoli F; de la Cruz Valbuena G; Perozeni F; D'Andrea C; Cerullo G; Cazzaniga S; Ballottari M New Phytol; 2020 Oct; 228(1):136-150. PubMed ID: 32442330 [TBL] [Abstract][Full Text] [Related]
5. Efficient heterologous transformation of Chlamydomonas reinhardtii npq2 mutant with the zeaxanthin epoxidase gene isolated and characterized from Chlorella zofingiensis. Couso I; Cordero BF; Vargas MÁ; Rodríguez H Mar Drugs; 2012 Sep; 10(9):1955-1976. PubMed ID: 23118714 [TBL] [Abstract][Full Text] [Related]
6. Molecular studies on structural changes and oligomerisation of violaxanthin de-epoxidase associated with the pH-dependent activation. Hallin EI; Hasan M; Guo K; Åkerlund HE Photosynth Res; 2016 Jul; 129(1):29-41. PubMed ID: 27116125 [TBL] [Abstract][Full Text] [Related]
7. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. Dautermann O; Lohr M Plant J; 2017 Dec; 92(5):879-891. PubMed ID: 28949044 [TBL] [Abstract][Full Text] [Related]
8. Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Troiano JM; Perozeni F; Moya R; Zuliani L; Baek K; Jin E; Cazzaniga S; Ballottari M; Schlau-Cohen GS Elife; 2021 Jan; 10():. PubMed ID: 33448262 [TBL] [Abstract][Full Text] [Related]
9. Genomic analysis of mutants affecting xanthophyll biosynthesis and regulation of photosynthetic light harvesting in Chlamydomonas reinhardtii. Anwaruzzaman M; Chin BL; Li XP; Lohr M; Martinez DA; Niyogi KK Photosynth Res; 2004; 82(3):265-76. PubMed ID: 16143839 [TBL] [Abstract][Full Text] [Related]
10. The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. García-Plazaola JI; Matsubara S; Osmond CB Funct Plant Biol; 2007 Sep; 34(9):759-773. PubMed ID: 32689404 [TBL] [Abstract][Full Text] [Related]
11. Identification of key residues for pH dependent activation of violaxanthin de-epoxidase from Arabidopsis thaliana. Fufezan C; Simionato D; Morosinotto T PLoS One; 2012; 7(4):e35669. PubMed ID: 22558195 [TBL] [Abstract][Full Text] [Related]
12. Protein and lipid dynamics in photosynthetic thylakoid membranes investigated by in-situ solid-state NMR. Azadi Chegeni F; Perin G; Sai Sankar Gupta KB; Simionato D; Morosinotto T; Pandit A Biochim Biophys Acta; 2016 Dec; 1857(12):1849-1859. PubMed ID: 27626974 [TBL] [Abstract][Full Text] [Related]
13. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants. Goss R; Greifenhagen A; Bergner J; Volke D; Hoffmann R; Wilhelm C; Schaller-Laudel S Planta; 2017 Apr; 245(4):793-806. PubMed ID: 28025675 [TBL] [Abstract][Full Text] [Related]
14. A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Arnoux P; Morosinotto T; Saga G; Bassi R; Pignol D Plant Cell; 2009 Jul; 21(7):2036-44. PubMed ID: 19638474 [TBL] [Abstract][Full Text] [Related]
15. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles. Hieber AD; Kawabata O; Yamamoto HY Plant Cell Physiol; 2004 Jan; 45(1):92-102. PubMed ID: 14749490 [TBL] [Abstract][Full Text] [Related]
16. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Baroli I; Do AD; Yamane T; Niyogi KK Plant Cell; 2003 Apr; 15(4):992-1008. PubMed ID: 12671093 [TBL] [Abstract][Full Text] [Related]
17. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. Goss R; Latowski D Front Plant Sci; 2020; 11():455. PubMed ID: 32425962 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. Coesel S; Oborník M; Varela J; Falciatore A; Bowler C PLoS One; 2008 Aug; 3(8):e2896. PubMed ID: 18682837 [TBL] [Abstract][Full Text] [Related]
19. The Amount of Zeaxanthin Epoxidase But Not the Amount of Violaxanthin De-Epoxidase Is a Critical Determinant of Zeaxanthin Accumulation in Arabidopsis thaliana and Nicotiana tabacum. Küster L; Lücke R; Brabender C; Bethmann S; Jahns P Plant Cell Physiol; 2023 Oct; 64(10):1220-1230. PubMed ID: 37556318 [TBL] [Abstract][Full Text] [Related]
20. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light. Bugos RC; Chang SH; Yamamoto HY Plant Physiol; 1999 Sep; 121(1):207-14. PubMed ID: 10482676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]