These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27618744)

  • 1. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode.
    Li X; Wang J; Zhao Y; Ge F; Komarneni S; Cai Z
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25905-25914. PubMed ID: 27618744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Synthesis of Na-Doped MnO
    Zong Q; Zhang Q; Mei X; Li Q; Zhou Z; Li D; Chen M; Shi F; Sun J; Yao Y; Zhang Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37233-37241. PubMed ID: 30299935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cheap, High-Performance, and Wearable Mn Oxide Supercapacitors with Urea-LiClO
    Deng MJ; Chen KW; Che YC; Wang IJ; Lin CM; Chen JM; Lu KT; Liao YF; Ishii H
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):479-486. PubMed ID: 27978621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance hybrid carbon nanotube fibers for wearable energy storage.
    Lu Z; Chao Y; Ge Y; Foroughi J; Zhao Y; Wang C; Long H; Wallace GG
    Nanoscale; 2017 Apr; 9(16):5063-5071. PubMed ID: 28265639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-V Solid-State Flexible Supercapacitors with Ionic-Liquid-Based Polymer Gel Electrolyte for AC Line Filtering.
    Kang YJ; Yoo Y; Kim W
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13909-17. PubMed ID: 27167760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper.
    Zhang L; Zhu P; Zhou F; Zeng W; Su H; Li G; Gao J; Sun R; Wong CP
    ACS Nano; 2016 Jan; 10(1):1273-82. PubMed ID: 26694704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.
    Liu Y; Miao X; Fang J; Zhang X; Chen S; Li W; Feng W; Chen Y; Wang W; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5251-60. PubMed ID: 26842681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-in-One Compact Architecture toward Wearable All-Solid-State, High-Volumetric-Energy-Density Supercapacitors.
    Gao T; Zhou Z; Yu J; Cao D; Wang G; Ding B; Li Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23834-23841. PubMed ID: 29956918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Pseudocapacitive Performance of Symmetric Polypyrrole-MnO
    Zhuo WJ; Wang YH; Huang CT; Deng MJ
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes.
    Zhao D; Zhang Q; Chen W; Yi X; Liu S; Wang Q; Liu Y; Li J; Li X; Yu H
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13213-13222. PubMed ID: 28349683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.
    Liu Y; Zhou J; Chen L; Zhang P; Fu W; Zhao H; Ma Y; Pan X; Zhang Z; Han W; Xie E
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23515-20. PubMed ID: 26449440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different metal cation-doped MnO
    Li X; Lin X; Yang N; Li X; Zhang W; Komarneni S
    J Colloid Interface Sci; 2023 Nov; 649():731-740. PubMed ID: 37385038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors.
    He Y; Chen W; Zhou J; Li X; Tang P; Zhang Z; Fu J; Xie E
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):210-8. PubMed ID: 24325338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Polymer Gel Electrolytes for Use in MnO
    Lin YH; Huang WT; Huang YT; Jhang YN; Shih TT; Yılmaz M; Deng MJ
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freestanding CoSeO
    Jiang Y; Wu Z; Jiang L; Pan Z; Yang P; Tian W; Hu L
    Nanoscale; 2018 Jul; 10(25):12003-12010. PubMed ID: 29905342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays.
    Duay J; Gillette E; Liu R; Lee SB
    Phys Chem Chem Phys; 2012 Mar; 14(10):3329-37. PubMed ID: 22298230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.