BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

851 related articles for article (PubMed ID: 27618862)

  • 1. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
    Rohles CM; Gießelmann G; Kohlstedt M; Wittmann C; Becker J
    Microb Cell Fact; 2016 Sep; 15(1):154. PubMed ID: 27618862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.
    Kim HT; Khang TU; Baritugo KA; Hyun SM; Kang KH; Jung SH; Song BK; Park K; Oh MK; Kim GB; Kim HU; Lee SY; Park SJ; Joo JC
    Metab Eng; 2019 Jan; 51():99-109. PubMed ID: 30144560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.
    Park SJ; Kim EY; Noh W; Park HM; Oh YH; Lee SH; Song BK; Jegal J; Lee SY
    Metab Eng; 2013 Mar; 16():42-7. PubMed ID: 23246520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing
    Han T; Kim GB; Lee SY
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate.
    Rohles C; Pauli S; Gießelmann G; Kohlstedt M; Becker J; Wittmann C
    Metab Eng; 2022 Sep; 73():168-181. PubMed ID: 35917915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase.
    Liu P; Zhang H; Lv M; Hu M; Li Z; Gao C; Xu P; Ma C
    Sci Rep; 2014 Jul; 4():5657. PubMed ID: 25012259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli.
    Li Z; Xu J; Jiang T; Ge Y; Liu P; Zhang M; Su Z; Gao C; Ma C; Xu P
    Sci Rep; 2016 Aug; 6():30884. PubMed ID: 27510748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate.
    Adkins J; Jordan J; Nielsen DR
    Biotechnol Bioeng; 2013 Jun; 110(6):1726-34. PubMed ID: 23296991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum.
    Prell C; Busche T; Rückert C; Nolte L; Brandenbusch C; Wendisch VF
    Microb Cell Fact; 2021 May; 20(1):97. PubMed ID: 33971881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
    Baritugo KA; Kim HT; David Y; Choi JI; Hong SH; Jeong KJ; Choi JH; Joo JC; Park SJ
    Appl Microbiol Biotechnol; 2018 May; 102(9):3915-3937. PubMed ID: 29557518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X; Zhao Y; Hu J; Li Y; Wang X
    Enzyme Microb Technol; 2016 Nov; 93-94():70-78. PubMed ID: 27702487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Production of the Dicarboxylic Acid Glutarate by
    Pérez-García F; Jorge JMP; Dreyszas A; Risse JM; Wendisch VF
    Front Microbiol; 2018; 9():2589. PubMed ID: 30425699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
    Pérez-García F; Max Risse J; Friehs K; Wendisch VF
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28169491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
    Buschke N; Becker J; Schäfer R; Kiefer P; Biedendieck R; Wittmann C
    Biotechnol J; 2013 May; 8(5):557-70. PubMed ID: 23447448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer.
    Han T; Lee SY
    Metab Eng; 2023 Sep; 79():78-85. PubMed ID: 37451533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
    Pérez-García F; Peters-Wendisch P; Wendisch VF
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8075-90. PubMed ID: 27345060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis.
    Park SJ; Oh YH; Noh W; Kim HY; Shin JH; Lee EG; Lee S; David Y; Baylon MG; Song BK; Jegal J; Lee SY; Lee SH
    Biotechnol J; 2014 Oct; 9(10):1322-8. PubMed ID: 25124937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing L-lysine production in Corynebacterium glutamicum by engineering amino acid transporters.
    Xiao J; Wang D; Wang L; Jiang Y; Xue L; Sui S; Wang J; Guo C; Wang R; Wang J; Li N; Fan H; Lv M
    Amino Acids; 2020 Oct; 52(10):1363-1374. PubMed ID: 33021685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Escherichia coli for Glutarate Production as the C
    Zhao M; Li G; Deng Y
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.